Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204355380> ?p ?o ?g. }
- W3204355380 abstract "We are interested in exploring the limit in using deep learning (DL) to study the electromagnetic (EM) response for complex and random metasurfaces, without any specific applications in mind. For simplicity, we focus on a simple pure reflection problem of a broadband EM plane wave incident normally on such complex metasurfaces in the frequency regime of 2–12 GHz. In doing so, we create a DL-based framework called the metasurface design deep convolutional neural network (MSDCNN) for both forward and inverse designs of three different classes of complex metasurfaces: (a) arbitrary connecting polygons, (b) basic pattern combination, and (c) fully random binary patterns. The performance of each metasurface is evaluated and cross-benchmarked. Dependent on the type of complex metasurfaces, sample size, and DL algorithms used, the MSDCNN is able to provide good agreement and can be a faster design tool for complex metasurfaces than the traditional full-wave EM simulation methods. However, no single universal deep convolutional neural network model can work well for all metasurface classes based on detailed statistical analysis (such as mean, variance, kurtosis, and mean-squared error). Our findings report important information on the advantages and limitations of current DL models in designing these ultimately complex metasurfaces." @default.
- W3204355380 created "2021-10-11" @default.
- W3204355380 creator A5009336251 @default.
- W3204355380 creator A5024863455 @default.
- W3204355380 creator A5077079182 @default.
- W3204355380 creator A5085473650 @default.
- W3204355380 date "2021-10-01" @default.
- W3204355380 modified "2023-10-15" @default.
- W3204355380 title "Deep learning-based design of broadband GHz complex and random metasurfaces" @default.
- W3204355380 cites W1872816141 @default.
- W3204355380 cites W2015866555 @default.
- W3204355380 cites W2125621954 @default.
- W3204355380 cites W2137064437 @default.
- W3204355380 cites W2217897795 @default.
- W3204355380 cites W2261770305 @default.
- W3204355380 cites W2302517508 @default.
- W3204355380 cites W2337082154 @default.
- W3204355380 cites W2403069638 @default.
- W3204355380 cites W2494556883 @default.
- W3204355380 cites W2536637700 @default.
- W3204355380 cites W2553217427 @default.
- W3204355380 cites W2581123063 @default.
- W3204355380 cites W2600647254 @default.
- W3204355380 cites W2624045900 @default.
- W3204355380 cites W2740268063 @default.
- W3204355380 cites W2741935822 @default.
- W3204355380 cites W2743896456 @default.
- W3204355380 cites W2747592475 @default.
- W3204355380 cites W2763851777 @default.
- W3204355380 cites W2766162919 @default.
- W3204355380 cites W2768087917 @default.
- W3204355380 cites W2775280502 @default.
- W3204355380 cites W2789083462 @default.
- W3204355380 cites W2803281408 @default.
- W3204355380 cites W2806536390 @default.
- W3204355380 cites W2884366127 @default.
- W3204355380 cites W2884775584 @default.
- W3204355380 cites W2886111172 @default.
- W3204355380 cites W2891797827 @default.
- W3204355380 cites W2899283552 @default.
- W3204355380 cites W2900701156 @default.
- W3204355380 cites W2902777867 @default.
- W3204355380 cites W2914274640 @default.
- W3204355380 cites W2919115771 @default.
- W3204355380 cites W2937816906 @default.
- W3204355380 cites W2947763854 @default.
- W3204355380 cites W2947828528 @default.
- W3204355380 cites W2949257317 @default.
- W3204355380 cites W2953641512 @default.
- W3204355380 cites W2954243242 @default.
- W3204355380 cites W2956449284 @default.
- W3204355380 cites W2974878544 @default.
- W3204355380 cites W2980401532 @default.
- W3204355380 cites W2989293933 @default.
- W3204355380 cites W2991468764 @default.
- W3204355380 cites W3004650610 @default.
- W3204355380 cites W3011523531 @default.
- W3204355380 cites W3016975822 @default.
- W3204355380 cites W3023907686 @default.
- W3204355380 cites W3035920506 @default.
- W3204355380 cites W3038564784 @default.
- W3204355380 cites W3075325345 @default.
- W3204355380 cites W3081636821 @default.
- W3204355380 cites W3087277129 @default.
- W3204355380 cites W3089064880 @default.
- W3204355380 cites W3092323705 @default.
- W3204355380 cites W3093210795 @default.
- W3204355380 cites W3094106217 @default.
- W3204355380 cites W3112263403 @default.
- W3204355380 cites W3129644058 @default.
- W3204355380 cites W3135380019 @default.
- W3204355380 cites W3139085483 @default.
- W3204355380 cites W3153576951 @default.
- W3204355380 cites W3159737431 @default.
- W3204355380 cites W3163907945 @default.
- W3204355380 cites W3164836970 @default.
- W3204355380 cites W3168693657 @default.
- W3204355380 cites W3171381448 @default.
- W3204355380 cites W4220985852 @default.
- W3204355380 doi "https://doi.org/10.1063/5.0061571" @default.
- W3204355380 hasPublicationYear "2021" @default.
- W3204355380 type Work @default.
- W3204355380 sameAs 3204355380 @default.
- W3204355380 citedByCount "6" @default.
- W3204355380 countsByYear W32043553802022 @default.
- W3204355380 countsByYear W32043553802023 @default.
- W3204355380 crossrefType "journal-article" @default.
- W3204355380 hasAuthorship W3204355380A5009336251 @default.
- W3204355380 hasAuthorship W3204355380A5024863455 @default.
- W3204355380 hasAuthorship W3204355380A5077079182 @default.
- W3204355380 hasAuthorship W3204355380A5085473650 @default.
- W3204355380 hasBestOaLocation W32043553801 @default.
- W3204355380 hasConcept C108583219 @default.
- W3204355380 hasConcept C11413529 @default.
- W3204355380 hasConcept C120665830 @default.
- W3204355380 hasConcept C121332964 @default.
- W3204355380 hasConcept C127413603 @default.
- W3204355380 hasConcept C134306372 @default.
- W3204355380 hasConcept C151201525 @default.
- W3204355380 hasConcept C154945302 @default.