Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204361402> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3204361402 endingPage "66" @default.
- W3204361402 startingPage "57" @default.
- W3204361402 abstract "We define and compute the asymptotic Brauer <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension of a field <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=application/x-tex>F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, denoted <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A upper B r d Subscript p Baseline left-parenthesis upper F right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>B</mml:mi> <mml:mi>r</mml:mi> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>ABrd_p(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in cases where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=application/x-tex>F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a rational function field or Laurent series field. <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A upper B r d Subscript p Baseline left-parenthesis upper F right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>B</mml:mi> <mml:mi>r</mml:mi> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>ABrd_p(F)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is defined like the Brauer <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension except it considers finite sets of Brauer classes instead of single classes. Our main result shows that for fields <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F 0 left-parenthesis alpha 1 comma ellipsis comma alpha Subscript n Baseline right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F_0(alpha _1,dots ,alpha _n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F 0 left-parenthesis left-parenthesis alpha 1 right-parenthesis right-parenthesis ellipsis left-parenthesis left-parenthesis alpha Subscript n Baseline right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>)</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F_0 (!( alpha _1)!) dots (!(alpha _n)!)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F 0> <mml:semantics> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=application/x-tex>F_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a perfect field of characteristic <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than 0> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n greater-than-or-equal-to 2> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>n geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the asymptotic Brauer <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-dimension is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also show that it is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n minus 1> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>n-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F equals upper F 0 left-parenthesis left-parenthesis alpha 1 right-parenthesis right-parenthesis ellipsis left-parenthesis left-parenthesis alpha Subscript n Baseline right-parenthesis right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>)</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>(</mml:mo> <mml:msub> <mml:mi>α<!-- α --></mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mo stretchy=false>)</mml:mo> <mml:mspace width=negativethinmathspace /> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>F=F_0 (!( alpha _1)!) dots (!(alpha _n)!)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F 0> <mml:semantics> <mml:msub> <mml:mi>F</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:annotation encoding=application/x-tex>F_0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is algebraically closed of characteristic not <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We conclude the paper with examples of pairs of cyclic algebras of odd prime degree <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over a field <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=application/x-tex>F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper B r d Subscript p Baseline left-parenthesis upper F right-parenthesis equals 2> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>Brd</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {Brd}_p(F)=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that share no maximal subfields despite their tensor product being non-division." @default.
- W3204361402 created "2021-10-11" @default.
- W3204361402 creator A5039007121 @default.
- W3204361402 creator A5085836470 @default.
- W3204361402 date "2023-01-01" @default.
- W3204361402 modified "2023-09-26" @default.
- W3204361402 title "Asymptotic Brauer 𝑝-dimension" @default.
- W3204361402 cites W1485511365 @default.
- W3204361402 cites W1711040812 @default.
- W3204361402 cites W1994115286 @default.
- W3204361402 cites W1996773847 @default.
- W3204361402 cites W2029128263 @default.
- W3204361402 cites W2062282062 @default.
- W3204361402 cites W2963280358 @default.
- W3204361402 cites W2963888883 @default.
- W3204361402 cites W3000254411 @default.
- W3204361402 cites W3026053324 @default.
- W3204361402 cites W3125047572 @default.
- W3204361402 cites W3139877312 @default.
- W3204361402 cites W3196908056 @default.
- W3204361402 cites W4237592483 @default.
- W3204361402 cites W4238628270 @default.
- W3204361402 cites W4241185804 @default.
- W3204361402 doi "https://doi.org/10.1090/conm/785/15775" @default.
- W3204361402 hasPublicationYear "2023" @default.
- W3204361402 type Work @default.
- W3204361402 sameAs 3204361402 @default.
- W3204361402 citedByCount "0" @default.
- W3204361402 crossrefType "other" @default.
- W3204361402 hasAuthorship W3204361402A5039007121 @default.
- W3204361402 hasAuthorship W3204361402A5085836470 @default.
- W3204361402 hasConcept C11413529 @default.
- W3204361402 hasConcept C114614502 @default.
- W3204361402 hasConcept C154945302 @default.
- W3204361402 hasConcept C2776321320 @default.
- W3204361402 hasConcept C33676613 @default.
- W3204361402 hasConcept C33923547 @default.
- W3204361402 hasConcept C41008148 @default.
- W3204361402 hasConceptScore W3204361402C11413529 @default.
- W3204361402 hasConceptScore W3204361402C114614502 @default.
- W3204361402 hasConceptScore W3204361402C154945302 @default.
- W3204361402 hasConceptScore W3204361402C2776321320 @default.
- W3204361402 hasConceptScore W3204361402C33676613 @default.
- W3204361402 hasConceptScore W3204361402C33923547 @default.
- W3204361402 hasConceptScore W3204361402C41008148 @default.
- W3204361402 hasLocation W32043614021 @default.
- W3204361402 hasOpenAccess W3204361402 @default.
- W3204361402 hasPrimaryLocation W32043614021 @default.
- W3204361402 hasRelatedWork W151193258 @default.
- W3204361402 hasRelatedWork W1529400504 @default.
- W3204361402 hasRelatedWork W1607154928 @default.
- W3204361402 hasRelatedWork W1871911958 @default.
- W3204361402 hasRelatedWork W1892467659 @default.
- W3204361402 hasRelatedWork W2080397230 @default.
- W3204361402 hasRelatedWork W2085026217 @default.
- W3204361402 hasRelatedWork W2348710178 @default.
- W3204361402 hasRelatedWork W2963659792 @default.
- W3204361402 hasRelatedWork W3201926073 @default.
- W3204361402 isParatext "false" @default.
- W3204361402 isRetracted "false" @default.
- W3204361402 magId "3204361402" @default.
- W3204361402 workType "other" @default.