Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204369833> ?p ?o ?g. }
- W3204369833 endingPage "100930" @default.
- W3204369833 startingPage "100930" @default.
- W3204369833 abstract "Central eastern continental United States. Groundwater level prediction is of great significance for the management of global water resources. Recently, machine learning, which can deal with highly nonlinear interactions among complex hydrological factors, has been widely applied to groundwater level prediction. However, previous studies mainly focused on improving the simulation performance in specific regions using different machine learning methods, while this study focused on the impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning. A gated recurrent unit (GRU) neural network was built for groundwater level simulation in 78 catchments in the study region, and principal component analysis was used to cluster a variety of catchment hydrological variables and determine the input variables for the GRU model. Detrended fluctuation analysis was applied to analyze the autocorrelation of groundwater level in each catchment. This study further explored the influences of the hydrogeological properties of different catchments and the autocorrelation of groundwater levels on machining learning simulations. The results showed that the GRU model performed better in regions where hydrogeological properties could promote more effective responses of groundwater to external changes. Moreover, a negative correlation between the simulation performance of machine learning and the autocorrelation of the groundwater level was found." @default.
- W3204369833 created "2021-10-11" @default.
- W3204369833 creator A5022755842 @default.
- W3204369833 creator A5032248012 @default.
- W3204369833 creator A5076368510 @default.
- W3204369833 creator A5084054659 @default.
- W3204369833 date "2021-10-01" @default.
- W3204369833 modified "2023-10-15" @default.
- W3204369833 title "Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States" @default.
- W3204369833 cites W1637586365 @default.
- W3204369833 cites W1689956120 @default.
- W3204369833 cites W1885871731 @default.
- W3204369833 cites W1939242431 @default.
- W3204369833 cites W1977699731 @default.
- W3204369833 cites W1991084100 @default.
- W3204369833 cites W1992521040 @default.
- W3204369833 cites W1994900091 @default.
- W3204369833 cites W2001317094 @default.
- W3204369833 cites W2008195117 @default.
- W3204369833 cites W2031030742 @default.
- W3204369833 cites W2042919441 @default.
- W3204369833 cites W2049491271 @default.
- W3204369833 cites W2064675550 @default.
- W3204369833 cites W2065453185 @default.
- W3204369833 cites W2071128523 @default.
- W3204369833 cites W2071850937 @default.
- W3204369833 cites W2087324037 @default.
- W3204369833 cites W2099529384 @default.
- W3204369833 cites W2100624141 @default.
- W3204369833 cites W2106922998 @default.
- W3204369833 cites W2133505387 @default.
- W3204369833 cites W2165387589 @default.
- W3204369833 cites W2170034874 @default.
- W3204369833 cites W2294798173 @default.
- W3204369833 cites W2303468042 @default.
- W3204369833 cites W2588509930 @default.
- W3204369833 cites W2603652782 @default.
- W3204369833 cites W2603766970 @default.
- W3204369833 cites W2605739831 @default.
- W3204369833 cites W2610098657 @default.
- W3204369833 cites W2624385633 @default.
- W3204369833 cites W2725171488 @default.
- W3204369833 cites W2728332558 @default.
- W3204369833 cites W2732218308 @default.
- W3204369833 cites W2766622701 @default.
- W3204369833 cites W2771066539 @default.
- W3204369833 cites W2803335032 @default.
- W3204369833 cites W2892133999 @default.
- W3204369833 cites W2904628560 @default.
- W3204369833 cites W2905202979 @default.
- W3204369833 cites W2908965886 @default.
- W3204369833 cites W2911668399 @default.
- W3204369833 cites W2925986121 @default.
- W3204369833 cites W2931425948 @default.
- W3204369833 cites W2944277284 @default.
- W3204369833 cites W2964979047 @default.
- W3204369833 cites W2989857225 @default.
- W3204369833 cites W2990265654 @default.
- W3204369833 cites W2991713810 @default.
- W3204369833 cites W2995149074 @default.
- W3204369833 cites W2996196807 @default.
- W3204369833 cites W2998121919 @default.
- W3204369833 cites W2999148060 @default.
- W3204369833 cites W3007733967 @default.
- W3204369833 cites W3021578030 @default.
- W3204369833 cites W3034385753 @default.
- W3204369833 cites W3036363354 @default.
- W3204369833 cites W3037074555 @default.
- W3204369833 cites W3049575128 @default.
- W3204369833 cites W3088716080 @default.
- W3204369833 cites W3099909056 @default.
- W3204369833 cites W3100968477 @default.
- W3204369833 cites W3118337566 @default.
- W3204369833 cites W3120397747 @default.
- W3204369833 cites W3126809581 @default.
- W3204369833 cites W3131324180 @default.
- W3204369833 cites W3133535855 @default.
- W3204369833 cites W3188984410 @default.
- W3204369833 doi "https://doi.org/10.1016/j.ejrh.2021.100930" @default.
- W3204369833 hasPublicationYear "2021" @default.
- W3204369833 type Work @default.
- W3204369833 sameAs 3204369833 @default.
- W3204369833 citedByCount "10" @default.
- W3204369833 countsByYear W32043698332021 @default.
- W3204369833 countsByYear W32043698332022 @default.
- W3204369833 countsByYear W32043698332023 @default.
- W3204369833 crossrefType "journal-article" @default.
- W3204369833 hasAuthorship W3204369833A5022755842 @default.
- W3204369833 hasAuthorship W3204369833A5032248012 @default.
- W3204369833 hasAuthorship W3204369833A5076368510 @default.
- W3204369833 hasAuthorship W3204369833A5084054659 @default.
- W3204369833 hasBestOaLocation W32043698331 @default.
- W3204369833 hasConcept C105795698 @default.
- W3204369833 hasConcept C119857082 @default.
- W3204369833 hasConcept C127313418 @default.
- W3204369833 hasConcept C153823671 @default.
- W3204369833 hasConcept C154945302 @default.
- W3204369833 hasConcept C187320778 @default.