Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204369957> ?p ?o ?g. }
- W3204369957 endingPage "16" @default.
- W3204369957 startingPage "1" @default.
- W3204369957 abstract "Road surface defects are crucial problems for safe and smooth traffic flow. Due to climate changes, low quality of construction material, large flow of traffic, and heavy vehicles, road surface anomalies are increasing rapidly. Detection and repairing of these defects are necessary for the safety of drivers, passengers, and vehicles from mechanical faults. In this modern era, autonomous vehicles are an active research area that controls itself with the help of in-vehicle sensors without human commands, especially after the emergence of deep learning (DNN) techniques. A combination of sensors and DNN techniques can be useful for unmanned vehicles for the perception of their surroundings for the detection of tracks and obstacles for smooth traveling based on the deployment of artificial intelligence in vehicles. One of the biggest challenges for autonomous vehicles is to avoid the critical road defects that may lead to dangerous situations. To solve the accident issues and share emergency information, the Intelligent Transportation System (ITS) introduced the concept of vehicular network termed as vehicular ad hoc network (VANET) for achieving security and safety in a traffic flow. A novel mechanism is proposed for the automatic detection of road anomalies by autonomous vehicles and providing road information to upcoming vehicles based on Edge AI and VANET. Road images captured via camera and deployment of the trained model for road anomaly detection in a vehicle could help to reduce the accident rate and risk of hazards on poor road conditions. The techniques Residual Convolutional Neural Network (ResNet-18) and Visual Geometry Group (VGG-11) are applied for the automatic detection and classification of the road with anomalies such as a pothole, bump, crack, and plain roads without anomalies using the dataset from different online sources. The results show that the applied models performed well than other techniques used for road anomalies identification." @default.
- W3204369957 created "2021-10-11" @default.
- W3204369957 creator A5003118033 @default.
- W3204369957 creator A5019813284 @default.
- W3204369957 creator A5021305119 @default.
- W3204369957 creator A5022386194 @default.
- W3204369957 creator A5028001914 @default.
- W3204369957 creator A5037528486 @default.
- W3204369957 creator A5048525740 @default.
- W3204369957 creator A5056873670 @default.
- W3204369957 creator A5069248901 @default.
- W3204369957 date "2021-09-29" @default.
- W3204369957 modified "2023-10-03" @default.
- W3204369957 title "Edge AI-Based Automated Detection and Classification of Road Anomalies in VANET Using Deep Learning" @default.
- W3204369957 cites W1484528067 @default.
- W3204369957 cites W1670272738 @default.
- W3204369957 cites W1848947338 @default.
- W3204369957 cites W1986614398 @default.
- W3204369957 cites W2053590082 @default.
- W3204369957 cites W2407692387 @default.
- W3204369957 cites W2466617315 @default.
- W3204369957 cites W2547950870 @default.
- W3204369957 cites W2565226616 @default.
- W3204369957 cites W2757455114 @default.
- W3204369957 cites W2762131764 @default.
- W3204369957 cites W2775131354 @default.
- W3204369957 cites W2794081601 @default.
- W3204369957 cites W2803574738 @default.
- W3204369957 cites W2809002558 @default.
- W3204369957 cites W2898061234 @default.
- W3204369957 cites W2900279892 @default.
- W3204369957 cites W2900753039 @default.
- W3204369957 cites W2918499589 @default.
- W3204369957 cites W2947568086 @default.
- W3204369957 cites W2965435055 @default.
- W3204369957 cites W2976255582 @default.
- W3204369957 cites W2991970757 @default.
- W3204369957 cites W3000602481 @default.
- W3204369957 cites W3005960570 @default.
- W3204369957 cites W3006380048 @default.
- W3204369957 cites W3010717703 @default.
- W3204369957 cites W3011233732 @default.
- W3204369957 cites W3018321396 @default.
- W3204369957 cites W3037130125 @default.
- W3204369957 cites W3080671748 @default.
- W3204369957 cites W3081307049 @default.
- W3204369957 cites W3087776899 @default.
- W3204369957 cites W3088889841 @default.
- W3204369957 cites W3091461723 @default.
- W3204369957 cites W3092785682 @default.
- W3204369957 cites W4229658977 @default.
- W3204369957 doi "https://doi.org/10.1155/2021/6262194" @default.
- W3204369957 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8494564" @default.
- W3204369957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34630550" @default.
- W3204369957 hasPublicationYear "2021" @default.
- W3204369957 type Work @default.
- W3204369957 sameAs 3204369957 @default.
- W3204369957 citedByCount "41" @default.
- W3204369957 countsByYear W32043699572021 @default.
- W3204369957 countsByYear W32043699572022 @default.
- W3204369957 countsByYear W32043699572023 @default.
- W3204369957 crossrefType "journal-article" @default.
- W3204369957 hasAuthorship W3204369957A5003118033 @default.
- W3204369957 hasAuthorship W3204369957A5019813284 @default.
- W3204369957 hasAuthorship W3204369957A5021305119 @default.
- W3204369957 hasAuthorship W3204369957A5022386194 @default.
- W3204369957 hasAuthorship W3204369957A5028001914 @default.
- W3204369957 hasAuthorship W3204369957A5037528486 @default.
- W3204369957 hasAuthorship W3204369957A5048525740 @default.
- W3204369957 hasAuthorship W3204369957A5056873670 @default.
- W3204369957 hasAuthorship W3204369957A5069248901 @default.
- W3204369957 hasBestOaLocation W32043699571 @default.
- W3204369957 hasConcept C105339364 @default.
- W3204369957 hasConcept C108583219 @default.
- W3204369957 hasConcept C111919701 @default.
- W3204369957 hasConcept C127413603 @default.
- W3204369957 hasConcept C146799927 @default.
- W3204369957 hasConcept C147176958 @default.
- W3204369957 hasConcept C154945302 @default.
- W3204369957 hasConcept C162307627 @default.
- W3204369957 hasConcept C192448918 @default.
- W3204369957 hasConcept C22212356 @default.
- W3204369957 hasConcept C2780042925 @default.
- W3204369957 hasConcept C2985695025 @default.
- W3204369957 hasConcept C41008148 @default.
- W3204369957 hasConcept C47796450 @default.
- W3204369957 hasConcept C555944384 @default.
- W3204369957 hasConcept C739882 @default.
- W3204369957 hasConcept C76155785 @default.
- W3204369957 hasConcept C79403827 @default.
- W3204369957 hasConcept C81363708 @default.
- W3204369957 hasConcept C94523657 @default.
- W3204369957 hasConceptScore W3204369957C105339364 @default.
- W3204369957 hasConceptScore W3204369957C108583219 @default.
- W3204369957 hasConceptScore W3204369957C111919701 @default.
- W3204369957 hasConceptScore W3204369957C127413603 @default.
- W3204369957 hasConceptScore W3204369957C146799927 @default.
- W3204369957 hasConceptScore W3204369957C147176958 @default.