Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204376940> ?p ?o ?g. }
- W3204376940 endingPage "2523" @default.
- W3204376940 startingPage "2523" @default.
- W3204376940 abstract "This study proposed different techniques to estimate the isotope composition (δ18O), salinity and temperature/potential temperature in the Mediterranean Sea using five different variables: (i–ii) geographic coordinates (Longitude, Latitude), (iii) year, (iv) month and (v) depth. Three kinds of models based on artificial neural network (ANN), random forest (RF) and support vector machine (SVM) were developed. According to the results, the random forest models presents the best prediction accuracy for the querying phase and can be used to predict the isotope composition (mean absolute percentage error (MAPE) around 4.98%), salinity (MAPE below 0.20%) and temperature (MAPE around 2.44%). These models could be useful for research works that require the use of past data for these variables." @default.
- W3204376940 created "2021-10-11" @default.
- W3204376940 creator A5001299251 @default.
- W3204376940 creator A5003093785 @default.
- W3204376940 creator A5025528132 @default.
- W3204376940 creator A5074130910 @default.
- W3204376940 creator A5075224391 @default.
- W3204376940 date "2021-10-08" @default.
- W3204376940 modified "2023-10-16" @default.
- W3204376940 title "Machine Learning Applied to the Oxygen-18 Isotopic Composition, Salinity and Temperature/Potential Temperature in the Mediterranean Sea" @default.
- W3204376940 cites W1655571901 @default.
- W3204376940 cites W1985022102 @default.
- W3204376940 cites W1991292594 @default.
- W3204376940 cites W1993349750 @default.
- W3204376940 cites W1995341919 @default.
- W3204376940 cites W2003534224 @default.
- W3204376940 cites W2008622095 @default.
- W3204376940 cites W2013541745 @default.
- W3204376940 cites W2028070629 @default.
- W3204376940 cites W2031590041 @default.
- W3204376940 cites W2038638391 @default.
- W3204376940 cites W2039522817 @default.
- W3204376940 cites W2042899316 @default.
- W3204376940 cites W2043550022 @default.
- W3204376940 cites W2045952723 @default.
- W3204376940 cites W2049356376 @default.
- W3204376940 cites W2049423932 @default.
- W3204376940 cites W2068588646 @default.
- W3204376940 cites W2070916980 @default.
- W3204376940 cites W2077905757 @default.
- W3204376940 cites W2078553662 @default.
- W3204376940 cites W2080534936 @default.
- W3204376940 cites W2082630773 @default.
- W3204376940 cites W2093262183 @default.
- W3204376940 cites W2114824684 @default.
- W3204376940 cites W2123696692 @default.
- W3204376940 cites W2145799438 @default.
- W3204376940 cites W2153635508 @default.
- W3204376940 cites W2164637081 @default.
- W3204376940 cites W2169439425 @default.
- W3204376940 cites W2259640359 @default.
- W3204376940 cites W2296034778 @default.
- W3204376940 cites W2296870177 @default.
- W3204376940 cites W2517395172 @default.
- W3204376940 cites W2577441144 @default.
- W3204376940 cites W2584200484 @default.
- W3204376940 cites W2592237821 @default.
- W3204376940 cites W2735403657 @default.
- W3204376940 cites W2767634046 @default.
- W3204376940 cites W2791150000 @default.
- W3204376940 cites W2793342656 @default.
- W3204376940 cites W2795350985 @default.
- W3204376940 cites W2802412288 @default.
- W3204376940 cites W2883038856 @default.
- W3204376940 cites W2889323772 @default.
- W3204376940 cites W2891910989 @default.
- W3204376940 cites W2897468376 @default.
- W3204376940 cites W2909030424 @default.
- W3204376940 cites W2911964244 @default.
- W3204376940 cites W2914168391 @default.
- W3204376940 cites W3015153359 @default.
- W3204376940 cites W3016719170 @default.
- W3204376940 cites W3038010422 @default.
- W3204376940 cites W3044843206 @default.
- W3204376940 cites W3046056639 @default.
- W3204376940 cites W3109827550 @default.
- W3204376940 cites W3118453946 @default.
- W3204376940 cites W3156313549 @default.
- W3204376940 cites W3194815561 @default.
- W3204376940 doi "https://doi.org/10.3390/math9192523" @default.
- W3204376940 hasPublicationYear "2021" @default.
- W3204376940 type Work @default.
- W3204376940 sameAs 3204376940 @default.
- W3204376940 citedByCount "6" @default.
- W3204376940 countsByYear W32043769402021 @default.
- W3204376940 countsByYear W32043769402022 @default.
- W3204376940 countsByYear W32043769402023 @default.
- W3204376940 crossrefType "journal-article" @default.
- W3204376940 hasAuthorship W3204376940A5001299251 @default.
- W3204376940 hasAuthorship W3204376940A5003093785 @default.
- W3204376940 hasAuthorship W3204376940A5025528132 @default.
- W3204376940 hasAuthorship W3204376940A5074130910 @default.
- W3204376940 hasAuthorship W3204376940A5075224391 @default.
- W3204376940 hasBestOaLocation W32043769401 @default.
- W3204376940 hasConcept C111368507 @default.
- W3204376940 hasConcept C122523270 @default.
- W3204376940 hasConcept C12267149 @default.
- W3204376940 hasConcept C123046963 @default.
- W3204376940 hasConcept C127313418 @default.
- W3204376940 hasConcept C129513315 @default.
- W3204376940 hasConcept C13280743 @default.
- W3204376940 hasConcept C134097258 @default.
- W3204376940 hasConcept C150217764 @default.
- W3204376940 hasConcept C154945302 @default.
- W3204376940 hasConcept C166957645 @default.
- W3204376940 hasConcept C169258074 @default.
- W3204376940 hasConcept C205649164 @default.
- W3204376940 hasConcept C23715911 @default.