Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204381888> ?p ?o ?g. }
- W3204381888 endingPage "244" @default.
- W3204381888 startingPage "244" @default.
- W3204381888 abstract "Social media platforms such as Facebook, Instagram, and Twitter are an inevitable part of our daily lives. These social media platforms are effective tools for disseminating news, photos, and other types of information. In addition to the positives of the convenience of these platforms, they are often used for propagating malicious data or information. This misinformation may misguide users and even have dangerous impact on society’s culture, economics, and healthcare. The propagation of this enormous amount of misinformation is difficult to counter. Hence, the spread of misinformation related to the COVID-19 pandemic, and its treatment and vaccination may lead to severe challenges for each country’s frontline workers. Therefore, it is essential to build an effective machine-learning (ML) misinformation-detection model for identifying the misinformation regarding COVID-19. In this paper, we propose three effective misinformation detection models. The proposed models are long short-term memory (LSTM) networks, which is a special type of RNN; a multichannel convolutional neural network (MC-CNN); and k-nearest neighbors (KNN). Simulations were conducted to evaluate the performance of the proposed models in terms of various evaluation metrics. The proposed models obtained superior results to those from the literature." @default.
- W3204381888 created "2021-10-11" @default.
- W3204381888 creator A5005897191 @default.
- W3204381888 creator A5027035874 @default.
- W3204381888 date "2021-09-23" @default.
- W3204381888 modified "2023-10-04" @default.
- W3204381888 title "Machine Learning in Detecting COVID-19 Misinformation on Twitter" @default.
- W3204381888 cites W1528742884 @default.
- W3204381888 cites W1557168064 @default.
- W3204381888 cites W1992267648 @default.
- W3204381888 cites W2053270840 @default.
- W3204381888 cites W2073755672 @default.
- W3204381888 cites W2079725295 @default.
- W3204381888 cites W2163900343 @default.
- W3204381888 cites W2294363208 @default.
- W3204381888 cites W2330219538 @default.
- W3204381888 cites W2582561810 @default.
- W3204381888 cites W2620918808 @default.
- W3204381888 cites W2625555835 @default.
- W3204381888 cites W2741074565 @default.
- W3204381888 cites W2759133519 @default.
- W3204381888 cites W2766546695 @default.
- W3204381888 cites W2769317996 @default.
- W3204381888 cites W2774008574 @default.
- W3204381888 cites W2785537800 @default.
- W3204381888 cites W2889265674 @default.
- W3204381888 cites W2909471801 @default.
- W3204381888 cites W2914393943 @default.
- W3204381888 cites W2919060752 @default.
- W3204381888 cites W2920037489 @default.
- W3204381888 cites W2956117722 @default.
- W3204381888 cites W2979811212 @default.
- W3204381888 cites W2981043738 @default.
- W3204381888 cites W2982968110 @default.
- W3204381888 cites W2997474044 @default.
- W3204381888 cites W2999790948 @default.
- W3204381888 cites W3012018604 @default.
- W3204381888 cites W3013473577 @default.
- W3204381888 cites W3014318908 @default.
- W3204381888 cites W3014820715 @default.
- W3204381888 cites W3015461837 @default.
- W3204381888 cites W3016902371 @default.
- W3204381888 cites W3034851746 @default.
- W3204381888 cites W3037159016 @default.
- W3204381888 cites W3037850663 @default.
- W3204381888 cites W3039072316 @default.
- W3204381888 cites W3042114636 @default.
- W3204381888 cites W3045984998 @default.
- W3204381888 cites W3088352144 @default.
- W3204381888 cites W3089905796 @default.
- W3204381888 cites W3093031973 @default.
- W3204381888 cites W3095376491 @default.
- W3204381888 cites W3097590906 @default.
- W3204381888 cites W3098835531 @default.
- W3204381888 cites W3101890897 @default.
- W3204381888 cites W3109024864 @default.
- W3204381888 cites W3118516682 @default.
- W3204381888 cites W3120079110 @default.
- W3204381888 cites W3131645232 @default.
- W3204381888 cites W3168293258 @default.
- W3204381888 cites W3181164542 @default.
- W3204381888 cites W4239712174 @default.
- W3204381888 cites W4288079542 @default.
- W3204381888 doi "https://doi.org/10.3390/fi13100244" @default.
- W3204381888 hasPublicationYear "2021" @default.
- W3204381888 type Work @default.
- W3204381888 sameAs 3204381888 @default.
- W3204381888 citedByCount "22" @default.
- W3204381888 countsByYear W32043818882021 @default.
- W3204381888 countsByYear W32043818882022 @default.
- W3204381888 countsByYear W32043818882023 @default.
- W3204381888 crossrefType "journal-article" @default.
- W3204381888 hasAuthorship W3204381888A5005897191 @default.
- W3204381888 hasAuthorship W3204381888A5027035874 @default.
- W3204381888 hasBestOaLocation W32043818881 @default.
- W3204381888 hasConcept C108827166 @default.
- W3204381888 hasConcept C119857082 @default.
- W3204381888 hasConcept C136764020 @default.
- W3204381888 hasConcept C142724271 @default.
- W3204381888 hasConcept C143275388 @default.
- W3204381888 hasConcept C154945302 @default.
- W3204381888 hasConcept C2522767166 @default.
- W3204381888 hasConcept C2776552730 @default.
- W3204381888 hasConcept C2776990098 @default.
- W3204381888 hasConcept C2779134260 @default.
- W3204381888 hasConcept C2779756789 @default.
- W3204381888 hasConcept C3008058167 @default.
- W3204381888 hasConcept C38652104 @default.
- W3204381888 hasConcept C41008148 @default.
- W3204381888 hasConcept C518677369 @default.
- W3204381888 hasConcept C524204448 @default.
- W3204381888 hasConcept C71924100 @default.
- W3204381888 hasConcept C81363708 @default.
- W3204381888 hasConceptScore W3204381888C108827166 @default.
- W3204381888 hasConceptScore W3204381888C119857082 @default.
- W3204381888 hasConceptScore W3204381888C136764020 @default.
- W3204381888 hasConceptScore W3204381888C142724271 @default.
- W3204381888 hasConceptScore W3204381888C143275388 @default.