Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204391609> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3204391609 abstract "Marine electromagnetic (EM) survey is an engineering endeavor to determine the location and dimension of hydrocarbon reservoirs which are particularly situated under the sea floor. Forward modeling is one of the important step in processing the data of a marine EM survey. By this modeling, the distribution of resistivity values along the sea bed could be mapped and the location and dimension of the associated hydrocarbon layer could be predicted. As an alternative to the established methods in conducting forward modeling, in this research two types of artificial neural networks are employed to determine the possibil�ities of them as forward models for marine EM survey. The networks are a multi-layer perceptron (MLP) network and a radial basis function (RBF) network. The motivation of this work is to find out the possibilities of these networks as forward models for marine EM survey. To achieve the research goals, a set of synthetic data must be generated using a simulation software. These data are used to train and test the MLP and RBF networks until they attained a sufficient property of generalization in modeling marine EM survey data. To validate the correctness of the models, a reverse method of forward modeling has been employed, which is the inversion process. Occam's inversion has been specifically used to validate the neural networks' for�ward modeling. It is found that artificial neural networks, specifically MLP and RBF networks, have a possibility to become forward models for marine electromagnetic sur�vey. In addition, this research found that the forward modeling by RBF network is better than the corresponding one by MLP network." @default.
- W3204391609 created "2021-10-11" @default.
- W3204391609 creator A5064720702 @default.
- W3204391609 date "2012-12-01" @default.
- W3204391609 modified "2023-09-23" @default.
- W3204391609 title "FORWARD MODELING OF MARINE ELECTROMAGNETIC SURVEY USING ARTIFICIAL NEURAL NETWORKS" @default.
- W3204391609 hasPublicationYear "2012" @default.
- W3204391609 type Work @default.
- W3204391609 sameAs 3204391609 @default.
- W3204391609 citedByCount "0" @default.
- W3204391609 crossrefType "dissertation" @default.
- W3204391609 hasAuthorship W3204391609A5064720702 @default.
- W3204391609 hasConcept C109007969 @default.
- W3204391609 hasConcept C11413529 @default.
- W3204391609 hasConcept C119599485 @default.
- W3204391609 hasConcept C124101348 @default.
- W3204391609 hasConcept C127313418 @default.
- W3204391609 hasConcept C127413603 @default.
- W3204391609 hasConcept C151730666 @default.
- W3204391609 hasConcept C154945302 @default.
- W3204391609 hasConcept C206554765 @default.
- W3204391609 hasConcept C2776662147 @default.
- W3204391609 hasConcept C41008148 @default.
- W3204391609 hasConcept C50644808 @default.
- W3204391609 hasConcept C55439883 @default.
- W3204391609 hasConcept C60908668 @default.
- W3204391609 hasConceptScore W3204391609C109007969 @default.
- W3204391609 hasConceptScore W3204391609C11413529 @default.
- W3204391609 hasConceptScore W3204391609C119599485 @default.
- W3204391609 hasConceptScore W3204391609C124101348 @default.
- W3204391609 hasConceptScore W3204391609C127313418 @default.
- W3204391609 hasConceptScore W3204391609C127413603 @default.
- W3204391609 hasConceptScore W3204391609C151730666 @default.
- W3204391609 hasConceptScore W3204391609C154945302 @default.
- W3204391609 hasConceptScore W3204391609C206554765 @default.
- W3204391609 hasConceptScore W3204391609C2776662147 @default.
- W3204391609 hasConceptScore W3204391609C41008148 @default.
- W3204391609 hasConceptScore W3204391609C50644808 @default.
- W3204391609 hasConceptScore W3204391609C55439883 @default.
- W3204391609 hasConceptScore W3204391609C60908668 @default.
- W3204391609 hasLocation W32043916091 @default.
- W3204391609 hasOpenAccess W3204391609 @default.
- W3204391609 hasPrimaryLocation W32043916091 @default.
- W3204391609 hasRelatedWork W105438516 @default.
- W3204391609 hasRelatedWork W1569192976 @default.
- W3204391609 hasRelatedWork W1581845358 @default.
- W3204391609 hasRelatedWork W2001385964 @default.
- W3204391609 hasRelatedWork W2031706942 @default.
- W3204391609 hasRelatedWork W2056401416 @default.
- W3204391609 hasRelatedWork W2083012618 @default.
- W3204391609 hasRelatedWork W2150166450 @default.
- W3204391609 hasRelatedWork W2163128839 @default.
- W3204391609 hasRelatedWork W2248685677 @default.
- W3204391609 hasRelatedWork W2293116554 @default.
- W3204391609 hasRelatedWork W2332492702 @default.
- W3204391609 hasRelatedWork W2522362050 @default.
- W3204391609 hasRelatedWork W257939644 @default.
- W3204391609 hasRelatedWork W2584806036 @default.
- W3204391609 hasRelatedWork W2763719418 @default.
- W3204391609 hasRelatedWork W3012026923 @default.
- W3204391609 hasRelatedWork W3091485273 @default.
- W3204391609 hasRelatedWork W1536925122 @default.
- W3204391609 hasRelatedWork W2607347984 @default.
- W3204391609 isParatext "false" @default.
- W3204391609 isRetracted "false" @default.
- W3204391609 magId "3204391609" @default.
- W3204391609 workType "dissertation" @default.