Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204394507> ?p ?o ?g. }
- W3204394507 endingPage "409" @default.
- W3204394507 startingPage "404" @default.
- W3204394507 abstract "Applications in synthetic and systems biology can benefit from measuring whole-cell response to biochemical perturbations. Execution of experiments to cover all possible combinations of perturbations is infeasible. In this paper, we present the host response model (HRM), a machine learning approach that maps response of single perturbations to transcriptional response of the combination of perturbations.The HRM combines high-throughput sequencing with machine learning to infer links between experimental context, prior knowledge of cell regulatory networks, and RNASeq data to predict a gene's dysregulation. We find that the HRM can predict the directionality of dysregulation to a combination of inducers with an accuracy of >90% using data from single inducers. We further find that the use of prior, known cell regulatory networks doubles the predictive performance of the HRM (an R2 from 0.3 to 0.65). The model was validated in two organisms, Escherichia coli and Bacillus subtilis, using new experiments conducted after training. Finally, while the HRM is trained with gene expression data, the direct prediction of differential expression makes it possible to also conduct enrichment analyses using its predictions. We show that the HRM can accurately classify >95% of the pathway regulations. The HRM reduces the number of RNASeq experiments needed as responses can be tested in silico prior to the experiment.The HRM software and tutorial are available at https://github.com/sd2e/CDM and the configurable differential expression analysis tools and tutorials are available at https://github.com/SD2E/omics_tools.Supplementary data are available at Bioinformatics online." @default.
- W3204394507 created "2021-10-11" @default.
- W3204394507 creator A5002759577 @default.
- W3204394507 creator A5002776546 @default.
- W3204394507 creator A5003898373 @default.
- W3204394507 creator A5003950738 @default.
- W3204394507 creator A5010119669 @default.
- W3204394507 creator A5020732999 @default.
- W3204394507 creator A5028170615 @default.
- W3204394507 creator A5036081460 @default.
- W3204394507 creator A5042478590 @default.
- W3204394507 creator A5051814524 @default.
- W3204394507 creator A5058239143 @default.
- W3204394507 creator A5065750867 @default.
- W3204394507 creator A5067484729 @default.
- W3204394507 creator A5069782628 @default.
- W3204394507 creator A5072619092 @default.
- W3204394507 creator A5081044746 @default.
- W3204394507 creator A5081401990 @default.
- W3204394507 creator A5081952035 @default.
- W3204394507 creator A5088368780 @default.
- W3204394507 creator A5088896206 @default.
- W3204394507 creator A5091530669 @default.
- W3204394507 date "2021-09-27" @default.
- W3204394507 modified "2023-10-06" @default.
- W3204394507 title "Prediction of whole-cell transcriptional response with machine learning" @default.
- W3204394507 cites W2052334453 @default.
- W3204394507 cites W2070050178 @default.
- W3204394507 cites W2081954164 @default.
- W3204394507 cites W2095885803 @default.
- W3204394507 cites W2109290075 @default.
- W3204394507 cites W2111852359 @default.
- W3204394507 cites W2114104545 @default.
- W3204394507 cites W2127420979 @default.
- W3204394507 cites W2143874153 @default.
- W3204394507 cites W2147571606 @default.
- W3204394507 cites W2178240050 @default.
- W3204394507 cites W2345356016 @default.
- W3204394507 cites W2762699776 @default.
- W3204394507 cites W2765912798 @default.
- W3204394507 cites W2780155440 @default.
- W3204394507 cites W2806387533 @default.
- W3204394507 cites W2898881712 @default.
- W3204394507 cites W2908304275 @default.
- W3204394507 cites W2910111050 @default.
- W3204394507 cites W2921808728 @default.
- W3204394507 cites W2937762029 @default.
- W3204394507 cites W3005703294 @default.
- W3204394507 cites W3011389310 @default.
- W3204394507 cites W3041601928 @default.
- W3204394507 cites W3046305306 @default.
- W3204394507 doi "https://doi.org/10.1093/bioinformatics/btab676" @default.
- W3204394507 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34570169" @default.
- W3204394507 hasPublicationYear "2021" @default.
- W3204394507 type Work @default.
- W3204394507 sameAs 3204394507 @default.
- W3204394507 citedByCount "6" @default.
- W3204394507 countsByYear W32043945072022 @default.
- W3204394507 countsByYear W32043945072023 @default.
- W3204394507 crossrefType "journal-article" @default.
- W3204394507 hasAuthorship W3204394507A5002759577 @default.
- W3204394507 hasAuthorship W3204394507A5002776546 @default.
- W3204394507 hasAuthorship W3204394507A5003898373 @default.
- W3204394507 hasAuthorship W3204394507A5003950738 @default.
- W3204394507 hasAuthorship W3204394507A5010119669 @default.
- W3204394507 hasAuthorship W3204394507A5020732999 @default.
- W3204394507 hasAuthorship W3204394507A5028170615 @default.
- W3204394507 hasAuthorship W3204394507A5036081460 @default.
- W3204394507 hasAuthorship W3204394507A5042478590 @default.
- W3204394507 hasAuthorship W3204394507A5051814524 @default.
- W3204394507 hasAuthorship W3204394507A5058239143 @default.
- W3204394507 hasAuthorship W3204394507A5065750867 @default.
- W3204394507 hasAuthorship W3204394507A5067484729 @default.
- W3204394507 hasAuthorship W3204394507A5069782628 @default.
- W3204394507 hasAuthorship W3204394507A5072619092 @default.
- W3204394507 hasAuthorship W3204394507A5081044746 @default.
- W3204394507 hasAuthorship W3204394507A5081401990 @default.
- W3204394507 hasAuthorship W3204394507A5081952035 @default.
- W3204394507 hasAuthorship W3204394507A5088368780 @default.
- W3204394507 hasAuthorship W3204394507A5088896206 @default.
- W3204394507 hasAuthorship W3204394507A5091530669 @default.
- W3204394507 hasBestOaLocation W32043945071 @default.
- W3204394507 hasConcept C104317684 @default.
- W3204394507 hasConcept C119857082 @default.
- W3204394507 hasConcept C124101348 @default.
- W3204394507 hasConcept C151730666 @default.
- W3204394507 hasConcept C152662350 @default.
- W3204394507 hasConcept C154945302 @default.
- W3204394507 hasConcept C199360897 @default.
- W3204394507 hasConcept C2225953 @default.
- W3204394507 hasConcept C2775905019 @default.
- W3204394507 hasConcept C2777904410 @default.
- W3204394507 hasConcept C2779343474 @default.
- W3204394507 hasConcept C41008148 @default.
- W3204394507 hasConcept C54355233 @default.
- W3204394507 hasConcept C70721500 @default.
- W3204394507 hasConcept C86803240 @default.
- W3204394507 hasConceptScore W3204394507C104317684 @default.