Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204405963> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3204405963 abstract "In this paper, we propose a multi-agent deep reinforcement learning (DRL) based approach to solve the distributed Volt-VAR optimization (VVO) problem in distribution networks by considering the uncertainty of system load and renewable power generation. We formulate the distributed VVO problem as a non-cooperative Markov game. Specifically, we split the distribution network into multiple regions that are controlled by a group of networked agents. We consider the statuses/ratios of switchable capacitor banks (SCBs), the tap position of voltage regulators (VRs), and the reactive power of inverter-based distributed generators (DGs) as the control variables. The objective is to minimize the total system loss while maintaining bus voltages within a normal operating range. To solve the problem, a multi-agent trust region policy optimization (MATRPO) based approach is applied to learn a set of decentralized policies. Simulation results on a modified IEEE-34 test system show that the proposed approach can successfully learn a set of high-quality decentralized policies for the agents to collaboratively reduce the system loss and regulate the bus voltages. The simulation results also demonstrate the superiority of the proposed approach over independent learning and the MADDPG method." @default.
- W3204405963 created "2021-10-11" @default.
- W3204405963 creator A5048592635 @default.
- W3204405963 creator A5057879702 @default.
- W3204405963 creator A5088920129 @default.
- W3204405963 date "2021-07-18" @default.
- W3204405963 modified "2023-10-18" @default.
- W3204405963 title "Distributed Volt-VAR Optimization based on Multi-Agent Deep Reinforcement Learning" @default.
- W3204405963 cites W1970233907 @default.
- W3204405963 cites W1991008596 @default.
- W3204405963 cites W2008128590 @default.
- W3204405963 cites W2026095762 @default.
- W3204405963 cites W2072511754 @default.
- W3204405963 cites W2092710777 @default.
- W3204405963 cites W2152637881 @default.
- W3204405963 cites W2172245346 @default.
- W3204405963 cites W2289258910 @default.
- W3204405963 cites W2757615817 @default.
- W3204405963 cites W2884320687 @default.
- W3204405963 cites W2899639849 @default.
- W3204405963 cites W2908374053 @default.
- W3204405963 cites W2990466689 @default.
- W3204405963 cites W2990763687 @default.
- W3204405963 cites W3010036076 @default.
- W3204405963 cites W3034969626 @default.
- W3204405963 cites W3035404531 @default.
- W3204405963 cites W3043475934 @default.
- W3204405963 cites W4234264328 @default.
- W3204405963 doi "https://doi.org/10.1109/ijcnn52387.2021.9534348" @default.
- W3204405963 hasPublicationYear "2021" @default.
- W3204405963 type Work @default.
- W3204405963 sameAs 3204405963 @default.
- W3204405963 citedByCount "3" @default.
- W3204405963 countsByYear W32044059632022 @default.
- W3204405963 countsByYear W32044059632023 @default.
- W3204405963 crossrefType "proceedings-article" @default.
- W3204405963 hasAuthorship W3204405963A5048592635 @default.
- W3204405963 hasAuthorship W3204405963A5057879702 @default.
- W3204405963 hasAuthorship W3204405963A5088920129 @default.
- W3204405963 hasConcept C108755667 @default.
- W3204405963 hasConcept C119599485 @default.
- W3204405963 hasConcept C121332964 @default.
- W3204405963 hasConcept C126255220 @default.
- W3204405963 hasConcept C127413603 @default.
- W3204405963 hasConcept C154945302 @default.
- W3204405963 hasConcept C163258240 @default.
- W3204405963 hasConcept C165801399 @default.
- W3204405963 hasConcept C188573790 @default.
- W3204405963 hasConcept C33923547 @default.
- W3204405963 hasConcept C41008148 @default.
- W3204405963 hasConcept C52192207 @default.
- W3204405963 hasConcept C544738498 @default.
- W3204405963 hasConcept C62520636 @default.
- W3204405963 hasConcept C89227174 @default.
- W3204405963 hasConcept C97541855 @default.
- W3204405963 hasConceptScore W3204405963C108755667 @default.
- W3204405963 hasConceptScore W3204405963C119599485 @default.
- W3204405963 hasConceptScore W3204405963C121332964 @default.
- W3204405963 hasConceptScore W3204405963C126255220 @default.
- W3204405963 hasConceptScore W3204405963C127413603 @default.
- W3204405963 hasConceptScore W3204405963C154945302 @default.
- W3204405963 hasConceptScore W3204405963C163258240 @default.
- W3204405963 hasConceptScore W3204405963C165801399 @default.
- W3204405963 hasConceptScore W3204405963C188573790 @default.
- W3204405963 hasConceptScore W3204405963C33923547 @default.
- W3204405963 hasConceptScore W3204405963C41008148 @default.
- W3204405963 hasConceptScore W3204405963C52192207 @default.
- W3204405963 hasConceptScore W3204405963C544738498 @default.
- W3204405963 hasConceptScore W3204405963C62520636 @default.
- W3204405963 hasConceptScore W3204405963C89227174 @default.
- W3204405963 hasConceptScore W3204405963C97541855 @default.
- W3204405963 hasLocation W32044059631 @default.
- W3204405963 hasOpenAccess W3204405963 @default.
- W3204405963 hasPrimaryLocation W32044059631 @default.
- W3204405963 hasRelatedWork W2073048132 @default.
- W3204405963 hasRelatedWork W2309993736 @default.
- W3204405963 hasRelatedWork W2346146157 @default.
- W3204405963 hasRelatedWork W2765710290 @default.
- W3204405963 hasRelatedWork W2906017017 @default.
- W3204405963 hasRelatedWork W2952598800 @default.
- W3204405963 hasRelatedWork W2981960003 @default.
- W3204405963 hasRelatedWork W3091142975 @default.
- W3204405963 hasRelatedWork W3125538871 @default.
- W3204405963 hasRelatedWork W4206173429 @default.
- W3204405963 isParatext "false" @default.
- W3204405963 isRetracted "false" @default.
- W3204405963 magId "3204405963" @default.
- W3204405963 workType "article" @default.