Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204409168> ?p ?o ?g. }
- W3204409168 endingPage "3916" @default.
- W3204409168 startingPage "3906" @default.
- W3204409168 abstract "ConspectusOrganic photovoltaics (OPVs) with a photoactive layer containing a blend of organic donor and acceptor species are considered to be a promising technology for clean energy owing to their unique flexible form factor and good solution processability that can potentially address the scalability challenges. The delicate designs of both donors and acceptors have significantly enhanced the power conversion efficiency of OPVs to more than 18%. Nonfullerene small-molecule acceptors (NFAs) have played a critical role in enhancing the short-circuit current density (JSC) by efficiently harvesting near-infrared (NIR) sunlight. To take full advantage of the abundant NIR photons, the optical band gap of NFAs should be further reduced to improve the performance of OPVs. Incorporating highly polarizable selenium atoms onto the backbone of organic conjugated materials has been proven to be an effective way to decrease their optical band gap. For example, a selenium-substituted NFA recently developed by our group has attained a JSC of approximate 27.5 mA cm-2 in OPV devices, surpassing those of most emerging photovoltaic systems. Inspired by this advance, we concentrate on the topic of selenium-containing materials in this Account to incite readers' interest in further exploring this series of materials.In this Account, we first compare the differences among chalcogen heterocycles and discuss the influence of fundamental electronic behavior on the collective photoelectrical properties of the resulting materials. The superior features of selenium-substituted materials are summarized as follows: (1) The large covalent radius of selenium can diminish the π-orbital overlap, rendering enhanced quinoidal resonance character and a narrowed optical band gap of resulting materials. (2) The selenium atom is more polarizable than sulfur owing to its larger and looser outermost electron cloud, enabling enhanced intermolecular Se-Se interaction and increased charge carrier mobility of relevant materials in the solid state. We then focus on summarizing the design rules for various categories of selenium-containing materials including polymer donors, small-molecule acceptors, and polymer acceptors, especially those composed of ladder-type polycyclic units. The motivation for incorporating selenium atoms into these materials and the structure-property relationships were thoroughly elucidated. Specifically, we discuss the changes in the optical band gap, charge carrier mobility, and molecular packing induced by selenium substitution and correlate the effects of these changes with the exciton behaviors, energy loss, and nanoscale film morphology of corresponding OPV devices. Furthermore, we point out the intrinsic stability of selenium-containing materials under maximum-power-point tracking and long-term photo- or thermostress and indicate their potential use in semitransparent and tandem solar cells. At the end, the prospect of future research focuses and the possible applications of selenium-containing materials in the OPV field are discussed." @default.
- W3204409168 created "2021-10-11" @default.
- W3204409168 creator A5008504116 @default.
- W3204409168 creator A5029163512 @default.
- W3204409168 creator A5032571426 @default.
- W3204409168 creator A5080880309 @default.
- W3204409168 creator A5085664488 @default.
- W3204409168 date "2021-10-04" @default.
- W3204409168 modified "2023-10-14" @default.
- W3204409168 title "Selenium-Containing Organic Photovoltaic Materials" @default.
- W3204409168 cites W1602661246 @default.
- W3204409168 cites W1971944586 @default.
- W3204409168 cites W1993901678 @default.
- W3204409168 cites W2003564476 @default.
- W3204409168 cites W2006487586 @default.
- W3204409168 cites W2006576200 @default.
- W3204409168 cites W2011957353 @default.
- W3204409168 cites W2034262584 @default.
- W3204409168 cites W2040466299 @default.
- W3204409168 cites W2046599345 @default.
- W3204409168 cites W2067768937 @default.
- W3204409168 cites W2082019533 @default.
- W3204409168 cites W2088833576 @default.
- W3204409168 cites W2094484861 @default.
- W3204409168 cites W2113988192 @default.
- W3204409168 cites W2116352193 @default.
- W3204409168 cites W2139437357 @default.
- W3204409168 cites W2190907390 @default.
- W3204409168 cites W2206995039 @default.
- W3204409168 cites W2317347903 @default.
- W3204409168 cites W2318510235 @default.
- W3204409168 cites W2329703706 @default.
- W3204409168 cites W2332658803 @default.
- W3204409168 cites W2339181070 @default.
- W3204409168 cites W2409280763 @default.
- W3204409168 cites W2416098265 @default.
- W3204409168 cites W2476620203 @default.
- W3204409168 cites W2564669384 @default.
- W3204409168 cites W2613257252 @default.
- W3204409168 cites W2620027717 @default.
- W3204409168 cites W2768838352 @default.
- W3204409168 cites W2772852824 @default.
- W3204409168 cites W2794469358 @default.
- W3204409168 cites W2805549380 @default.
- W3204409168 cites W2886633134 @default.
- W3204409168 cites W2887289014 @default.
- W3204409168 cites W2889839957 @default.
- W3204409168 cites W2909990379 @default.
- W3204409168 cites W2942053891 @default.
- W3204409168 cites W2951188278 @default.
- W3204409168 cites W2952806638 @default.
- W3204409168 cites W2957124833 @default.
- W3204409168 cites W2963013917 @default.
- W3204409168 cites W2973012689 @default.
- W3204409168 cites W2994518099 @default.
- W3204409168 cites W3012409835 @default.
- W3204409168 cites W3022159280 @default.
- W3204409168 cites W3067531313 @default.
- W3204409168 cites W3080898850 @default.
- W3204409168 cites W3092106579 @default.
- W3204409168 cites W3093504066 @default.
- W3204409168 cites W3109167983 @default.
- W3204409168 cites W3133397053 @default.
- W3204409168 cites W3138131998 @default.
- W3204409168 cites W3159723214 @default.
- W3204409168 cites W3161611462 @default.
- W3204409168 cites W3187660399 @default.
- W3204409168 cites W3201567461 @default.
- W3204409168 doi "https://doi.org/10.1021/acs.accounts.1c00443" @default.
- W3204409168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34606230" @default.
- W3204409168 hasPublicationYear "2021" @default.
- W3204409168 type Work @default.
- W3204409168 sameAs 3204409168 @default.
- W3204409168 citedByCount "57" @default.
- W3204409168 countsByYear W32044091682022 @default.
- W3204409168 countsByYear W32044091682023 @default.
- W3204409168 crossrefType "journal-article" @default.
- W3204409168 hasAuthorship W3204409168A5008504116 @default.
- W3204409168 hasAuthorship W3204409168A5029163512 @default.
- W3204409168 hasAuthorship W3204409168A5032571426 @default.
- W3204409168 hasAuthorship W3204409168A5080880309 @default.
- W3204409168 hasAuthorship W3204409168A5085664488 @default.
- W3204409168 hasConcept C158733187 @default.
- W3204409168 hasConcept C159985019 @default.
- W3204409168 hasConcept C171250308 @default.
- W3204409168 hasConcept C178790620 @default.
- W3204409168 hasConcept C181966813 @default.
- W3204409168 hasConcept C185592680 @default.
- W3204409168 hasConcept C18903297 @default.
- W3204409168 hasConcept C191897082 @default.
- W3204409168 hasConcept C192562407 @default.
- W3204409168 hasConcept C41291067 @default.
- W3204409168 hasConcept C49040817 @default.
- W3204409168 hasConcept C521977710 @default.
- W3204409168 hasConcept C542589376 @default.
- W3204409168 hasConcept C553756173 @default.
- W3204409168 hasConcept C86803240 @default.
- W3204409168 hasConcept C91614233 @default.