Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204411912> ?p ?o ?g. }
- W3204411912 abstract "Purpose To investigate if a deep learning convolutional neural network (CNN) could enable low-dose fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI for correct treatment response assessment of children and young adults with lymphoma. Materials and Methods In this secondary analysis of prospectively collected data (ClinicalTrials.gov identifier: NCT01542879), 20 patients with lymphoma (mean age, 16.4 years ± 6.4 [standard deviation]) underwent 18F-FDG PET/MRI between July 2015 and August 2019 at baseline and after induction chemotherapy. Full-dose 18F-FDG PET data (3 MBq/kg) were simulated to lower 18F-FDG doses based on the percentage of coincidence events (representing simulated 75%, 50%, 25%, 12.5%, and 6.25% 18F-FDG dose [hereafter referred to as 75%Sim, 50%Sim, 25%Sim, 12.5%Sim, and 6.25%Sim, respectively]). A U.S. Food and Drug Administration–approved CNN was used to augment input simulated low-dose scans to full-dose scans. For each follow-up scan after induction chemotherapy, the standardized uptake value (SUV) response score was calculated as the maximum SUV (SUVmax) of the tumor normalized to the mean liver SUV; tumor response was classified as adequate or inadequate. Sensitivity and specificity in the detection of correct response status were computed using full-dose PET as the reference standard. Results With decreasing simulated radiotracer doses, tumor SUVmax increased. A dose below 75%Sim of the full dose led to erroneous upstaging of adequate responders to inadequate responders (43% [six of 14 patients] for 75%Sim; 93% [13 of 14 patients] for 50%Sim; and 100% [14 of 14 patients] below 50%Sim; P < .05 for all). CNN-enhanced low-dose PET/MRI scans at 75%Sim and 50%Sim enabled correct response assessments for all patients. Use of the CNN augmentation for assessing adequate and inadequate responses resulted in identical sensitivities (100%) and specificities (100%) between the assessment of 100% full-dose PET, augmented 75%Sim, and augmented 50%Sim images. Conclusion CNN enhancement of PET/MRI scans may enable 50% 18F-FDG dose reduction with correct treatment response assessment of children and young adults with lymphoma. Keywords: Pediatrics, PET/MRI, Computer Applications Detection/Diagnosis, Lymphoma, Tumor Response, Whole-Body Imaging, Technology Assessment Clinical trial registration no: NCT01542879 Supplemental material is available for this article. © RSNA, 2021" @default.
- W3204411912 created "2021-10-11" @default.
- W3204411912 creator A5004780954 @default.
- W3204411912 creator A5012265431 @default.
- W3204411912 creator A5029693085 @default.
- W3204411912 creator A5032248356 @default.
- W3204411912 creator A5041037504 @default.
- W3204411912 creator A5046496977 @default.
- W3204411912 creator A5059541221 @default.
- W3204411912 creator A5064829377 @default.
- W3204411912 creator A5071654401 @default.
- W3204411912 creator A5076954902 @default.
- W3204411912 creator A5085126028 @default.
- W3204411912 creator A5086834693 @default.
- W3204411912 date "2021-11-01" @default.
- W3204411912 modified "2023-09-23" @default.
- W3204411912 title "Validation of Deep Learning–based Augmentation for Reduced <sup>18</sup>F-FDG Dose for PET/MRI in Children and Young Adults with Lymphoma" @default.
- W3204411912 cites W1576677061 @default.
- W3204411912 cites W1966976587 @default.
- W3204411912 cites W1983317938 @default.
- W3204411912 cites W1991945661 @default.
- W3204411912 cites W2034174018 @default.
- W3204411912 cites W2034221188 @default.
- W3204411912 cites W2037384834 @default.
- W3204411912 cites W2072931049 @default.
- W3204411912 cites W2094526171 @default.
- W3204411912 cites W2107919414 @default.
- W3204411912 cites W2119147717 @default.
- W3204411912 cites W2123114333 @default.
- W3204411912 cites W2124089213 @default.
- W3204411912 cites W2130876592 @default.
- W3204411912 cites W2137571255 @default.
- W3204411912 cites W2195668156 @default.
- W3204411912 cites W2313339984 @default.
- W3204411912 cites W2419225042 @default.
- W3204411912 cites W2515813576 @default.
- W3204411912 cites W2526449702 @default.
- W3204411912 cites W2590224671 @default.
- W3204411912 cites W2597934359 @default.
- W3204411912 cites W2598700764 @default.
- W3204411912 cites W2606364858 @default.
- W3204411912 cites W2610796455 @default.
- W3204411912 cites W2728554424 @default.
- W3204411912 cites W2737796916 @default.
- W3204411912 cites W2754986123 @default.
- W3204411912 cites W2766766852 @default.
- W3204411912 cites W2788633781 @default.
- W3204411912 cites W2789565832 @default.
- W3204411912 cites W2789588857 @default.
- W3204411912 cites W2794977498 @default.
- W3204411912 cites W2883645764 @default.
- W3204411912 cites W2899016263 @default.
- W3204411912 cites W2899604332 @default.
- W3204411912 cites W2904787157 @default.
- W3204411912 cites W2913388507 @default.
- W3204411912 cites W2962889100 @default.
- W3204411912 cites W2971793787 @default.
- W3204411912 cites W2981200183 @default.
- W3204411912 cites W2999511788 @default.
- W3204411912 cites W3010452423 @default.
- W3204411912 cites W3022714102 @default.
- W3204411912 cites W3126557061 @default.
- W3204411912 cites W3194623075 @default.
- W3204411912 cites W4244821078 @default.
- W3204411912 cites W4294214983 @default.
- W3204411912 cites W2773814721 @default.
- W3204411912 doi "https://doi.org/10.1148/ryai.2021200232" @default.
- W3204411912 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34870211" @default.
- W3204411912 hasPublicationYear "2021" @default.
- W3204411912 type Work @default.
- W3204411912 sameAs 3204411912 @default.
- W3204411912 citedByCount "7" @default.
- W3204411912 countsByYear W32044119122022 @default.
- W3204411912 countsByYear W32044119122023 @default.
- W3204411912 crossrefType "journal-article" @default.
- W3204411912 hasAuthorship W3204411912A5004780954 @default.
- W3204411912 hasAuthorship W3204411912A5012265431 @default.
- W3204411912 hasAuthorship W3204411912A5029693085 @default.
- W3204411912 hasAuthorship W3204411912A5032248356 @default.
- W3204411912 hasAuthorship W3204411912A5041037504 @default.
- W3204411912 hasAuthorship W3204411912A5046496977 @default.
- W3204411912 hasAuthorship W3204411912A5059541221 @default.
- W3204411912 hasAuthorship W3204411912A5064829377 @default.
- W3204411912 hasAuthorship W3204411912A5071654401 @default.
- W3204411912 hasAuthorship W3204411912A5076954902 @default.
- W3204411912 hasAuthorship W3204411912A5085126028 @default.
- W3204411912 hasAuthorship W3204411912A5086834693 @default.
- W3204411912 hasBestOaLocation W32044119122 @default.
- W3204411912 hasConcept C126322002 @default.
- W3204411912 hasConcept C149857219 @default.
- W3204411912 hasConcept C199374082 @default.
- W3204411912 hasConcept C2775842073 @default.
- W3204411912 hasConcept C2779338263 @default.
- W3204411912 hasConcept C2989005 @default.
- W3204411912 hasConcept C71924100 @default.
- W3204411912 hasConceptScore W3204411912C126322002 @default.
- W3204411912 hasConceptScore W3204411912C149857219 @default.
- W3204411912 hasConceptScore W3204411912C199374082 @default.
- W3204411912 hasConceptScore W3204411912C2775842073 @default.
- W3204411912 hasConceptScore W3204411912C2779338263 @default.