Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204453541> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3204453541 endingPage "4235" @default.
- W3204453541 startingPage "4216" @default.
- W3204453541 abstract "Deep learning on graphs has recently achieved remarkable success on a variety of tasks, while such success relies heavily on the massive and carefully labeled data. However, precise annotations are generally very expensive and time-consuming. To address this problem, self-supervised learning (SSL) is emerging as a new paradigm for extracting informative knowledge through well-designed pretext tasks without relying on manual labels. In this survey, we extend the concept of SSL, which first emerged in the fields of computer vision and natural language processing, to present a timely and comprehensive review of existing SSL techniques for graph data. Specifically, we divide existing graph SSL methods into three categories: contrastive, generative, and predictive. More importantly, unlike other surveys that only provide a high-level description of published research, we present an additional mathematical summary of existing works in a unified framework. Furthermore, to facilitate methodological development and empirical comparisons, we also summarize the commonly used datasets, evaluation metrics, downstream tasks, open-source implementations, and experimental study of various algorithms. Finally, we discuss the technical challenges and potential future directions for improving graph self-supervised learning. Latest advances in graph SSL are summarized in a GitHub repository <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/LirongWu/awesome-graph-self-supervised-learning</uri> ." @default.
- W3204453541 created "2021-10-11" @default.
- W3204453541 creator A5006542157 @default.
- W3204453541 creator A5031613239 @default.
- W3204453541 creator A5041519364 @default.
- W3204453541 creator A5060075172 @default.
- W3204453541 creator A5082786719 @default.
- W3204453541 date "2023-04-01" @default.
- W3204453541 modified "2023-10-15" @default.
- W3204453541 title "Self-Supervised Learning on Graphs: Contrastive, Generative, or Predictive" @default.
- W3204453541 cites W2008857988 @default.
- W3204453541 cites W2087194317 @default.
- W3204453541 cites W2092750499 @default.
- W3204453541 cites W2100495367 @default.
- W3204453541 cites W2131681506 @default.
- W3204453541 cites W2606377603 @default.
- W3204453541 cites W2735272571 @default.
- W3204453541 cites W2953791858 @default.
- W3204453541 cites W2962852342 @default.
- W3204453541 cites W2964051675 @default.
- W3204453541 cites W2965570621 @default.
- W3204453541 cites W2997686727 @default.
- W3204453541 cites W2998269939 @default.
- W3204453541 cites W3012816161 @default.
- W3204453541 cites W3035524453 @default.
- W3204453541 cites W3035748723 @default.
- W3204453541 cites W3041133507 @default.
- W3204453541 cites W3080997787 @default.
- W3204453541 cites W3099152386 @default.
- W3204453541 cites W3099206234 @default.
- W3204453541 cites W3106188259 @default.
- W3204453541 cites W3114654929 @default.
- W3204453541 cites W3117298090 @default.
- W3204453541 cites W3126928293 @default.
- W3204453541 cites W3130828726 @default.
- W3204453541 cites W3153673236 @default.
- W3204453541 cites W3158147183 @default.
- W3204453541 cites W3170682786 @default.
- W3204453541 cites W3172710079 @default.
- W3204453541 cites W4210257598 @default.
- W3204453541 doi "https://doi.org/10.1109/tkde.2021.3131584" @default.
- W3204453541 hasPublicationYear "2023" @default.
- W3204453541 type Work @default.
- W3204453541 sameAs 3204453541 @default.
- W3204453541 citedByCount "26" @default.
- W3204453541 countsByYear W32044535412021 @default.
- W3204453541 countsByYear W32044535412022 @default.
- W3204453541 countsByYear W32044535412023 @default.
- W3204453541 crossrefType "journal-article" @default.
- W3204453541 hasAuthorship W3204453541A5006542157 @default.
- W3204453541 hasAuthorship W3204453541A5031613239 @default.
- W3204453541 hasAuthorship W3204453541A5041519364 @default.
- W3204453541 hasAuthorship W3204453541A5060075172 @default.
- W3204453541 hasAuthorship W3204453541A5082786719 @default.
- W3204453541 hasBestOaLocation W32044535412 @default.
- W3204453541 hasConcept C108583219 @default.
- W3204453541 hasConcept C119857082 @default.
- W3204453541 hasConcept C132525143 @default.
- W3204453541 hasConcept C154945302 @default.
- W3204453541 hasConcept C199360897 @default.
- W3204453541 hasConcept C204321447 @default.
- W3204453541 hasConcept C26713055 @default.
- W3204453541 hasConcept C39890363 @default.
- W3204453541 hasConcept C41008148 @default.
- W3204453541 hasConcept C80444323 @default.
- W3204453541 hasConceptScore W3204453541C108583219 @default.
- W3204453541 hasConceptScore W3204453541C119857082 @default.
- W3204453541 hasConceptScore W3204453541C132525143 @default.
- W3204453541 hasConceptScore W3204453541C154945302 @default.
- W3204453541 hasConceptScore W3204453541C199360897 @default.
- W3204453541 hasConceptScore W3204453541C204321447 @default.
- W3204453541 hasConceptScore W3204453541C26713055 @default.
- W3204453541 hasConceptScore W3204453541C39890363 @default.
- W3204453541 hasConceptScore W3204453541C41008148 @default.
- W3204453541 hasConceptScore W3204453541C80444323 @default.
- W3204453541 hasIssue "4" @default.
- W3204453541 hasLocation W32044535411 @default.
- W3204453541 hasLocation W32044535412 @default.
- W3204453541 hasOpenAccess W3204453541 @default.
- W3204453541 hasPrimaryLocation W32044535411 @default.
- W3204453541 hasRelatedWork W2002978035 @default.
- W3204453541 hasRelatedWork W2120447654 @default.
- W3204453541 hasRelatedWork W2128223750 @default.
- W3204453541 hasRelatedWork W2144453115 @default.
- W3204453541 hasRelatedWork W2188872161 @default.
- W3204453541 hasRelatedWork W2209382646 @default.
- W3204453541 hasRelatedWork W2586133538 @default.
- W3204453541 hasRelatedWork W4238532390 @default.
- W3204453541 hasRelatedWork W797688974 @default.
- W3204453541 hasRelatedWork W2977179488 @default.
- W3204453541 hasVolume "35" @default.
- W3204453541 isParatext "false" @default.
- W3204453541 isRetracted "false" @default.
- W3204453541 magId "3204453541" @default.
- W3204453541 workType "article" @default.