Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204456443> ?p ?o ?g. }
- W3204456443 endingPage "1812" @default.
- W3204456443 startingPage "1812" @default.
- W3204456443 abstract "We predict mechanical ventilation requirement and mortality using computational modeling of chest radiographs (CXRs) for coronavirus disease 2019 (COVID-19) patients. This two-center, retrospective study analyzed 530 deidentified CXRs from 515 COVID-19 patients treated at Stony Brook University Hospital and Newark Beth Israel Medical Center between March and August 2020. DL and machine learning classifiers to predict mechanical ventilation requirement and mortality were trained and evaluated using patient CXRs. A novel radiomic embedding framework was also explored for outcome prediction. All results are compared against radiologist grading of CXRs (zone-wise expert severity scores). Radiomic and DL classification models had mAUCs of 0.78+/-0.02 and 0.81+/-0.04, compared with expert scores mAUCs of 0.75+/-0.02 and 0.79+/-0.05 for mechanical ventilation requirement and mortality prediction, respectively. Combined classifiers using both radiomics and expert severity scores resulted in mAUCs of 0.79+/-0.04 and 0.83+/-0.04 for each prediction task, demonstrating improvement over either artificial intelligence or radiologist interpretation alone. Our results also suggest instances where inclusion of radiomic features in DL improves model predictions, something that might be explored in other pathologies. The models proposed in this study and the prognostic information they provide might aid physician decision making and resource allocation during the COVID-19 pandemic." @default.
- W3204456443 created "2021-10-11" @default.
- W3204456443 creator A5003898489 @default.
- W3204456443 creator A5010473658 @default.
- W3204456443 creator A5022322707 @default.
- W3204456443 creator A5023930542 @default.
- W3204456443 creator A5026407543 @default.
- W3204456443 creator A5036343196 @default.
- W3204456443 creator A5046410013 @default.
- W3204456443 creator A5051186131 @default.
- W3204456443 creator A5056869470 @default.
- W3204456443 creator A5062644572 @default.
- W3204456443 creator A5066393172 @default.
- W3204456443 creator A5073873025 @default.
- W3204456443 creator A5087055316 @default.
- W3204456443 date "2021-09-30" @default.
- W3204456443 modified "2023-10-04" @default.
- W3204456443 title "Predicting Mechanical Ventilation and Mortality in COVID-19 Using Radiomics and Deep Learning on Chest Radiographs: A Multi-Institutional Study" @default.
- W3204456443 cites W2044465660 @default.
- W3204456443 cites W2049694710 @default.
- W3204456443 cites W2113242816 @default.
- W3204456443 cites W2154053567 @default.
- W3204456443 cites W2774320778 @default.
- W3204456443 cites W2939031376 @default.
- W3204456443 cites W2964962196 @default.
- W3204456443 cites W3007497549 @default.
- W3204456443 cites W3008443627 @default.
- W3204456443 cites W3013130152 @default.
- W3204456443 cites W3013585706 @default.
- W3204456443 cites W3017855299 @default.
- W3204456443 cites W3024853795 @default.
- W3204456443 cites W3025015013 @default.
- W3204456443 cites W3025394897 @default.
- W3204456443 cites W3025744915 @default.
- W3204456443 cites W3035151116 @default.
- W3204456443 cites W3092171282 @default.
- W3204456443 cites W3092436046 @default.
- W3204456443 cites W3093455605 @default.
- W3204456443 cites W3095986980 @default.
- W3204456443 cites W3096947210 @default.
- W3204456443 cites W3104810384 @default.
- W3204456443 cites W3112660304 @default.
- W3204456443 cites W3116438365 @default.
- W3204456443 cites W3130737857 @default.
- W3204456443 cites W3130913780 @default.
- W3204456443 cites W3155720539 @default.
- W3204456443 cites W3158317643 @default.
- W3204456443 cites W3158390466 @default.
- W3204456443 doi "https://doi.org/10.3390/diagnostics11101812" @default.
- W3204456443 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8535062" @default.
- W3204456443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34679510" @default.
- W3204456443 hasPublicationYear "2021" @default.
- W3204456443 type Work @default.
- W3204456443 sameAs 3204456443 @default.
- W3204456443 citedByCount "22" @default.
- W3204456443 countsByYear W32044564432021 @default.
- W3204456443 countsByYear W32044564432022 @default.
- W3204456443 countsByYear W32044564432023 @default.
- W3204456443 crossrefType "journal-article" @default.
- W3204456443 hasAuthorship W3204456443A5003898489 @default.
- W3204456443 hasAuthorship W3204456443A5010473658 @default.
- W3204456443 hasAuthorship W3204456443A5022322707 @default.
- W3204456443 hasAuthorship W3204456443A5023930542 @default.
- W3204456443 hasAuthorship W3204456443A5026407543 @default.
- W3204456443 hasAuthorship W3204456443A5036343196 @default.
- W3204456443 hasAuthorship W3204456443A5046410013 @default.
- W3204456443 hasAuthorship W3204456443A5051186131 @default.
- W3204456443 hasAuthorship W3204456443A5056869470 @default.
- W3204456443 hasAuthorship W3204456443A5062644572 @default.
- W3204456443 hasAuthorship W3204456443A5066393172 @default.
- W3204456443 hasAuthorship W3204456443A5073873025 @default.
- W3204456443 hasAuthorship W3204456443A5087055316 @default.
- W3204456443 hasBestOaLocation W32044564431 @default.
- W3204456443 hasConcept C119857082 @default.
- W3204456443 hasConcept C126322002 @default.
- W3204456443 hasConcept C126838900 @default.
- W3204456443 hasConcept C127413603 @default.
- W3204456443 hasConcept C147176958 @default.
- W3204456443 hasConcept C154945302 @default.
- W3204456443 hasConcept C167135981 @default.
- W3204456443 hasConcept C194828623 @default.
- W3204456443 hasConcept C2777080012 @default.
- W3204456443 hasConcept C2777286243 @default.
- W3204456443 hasConcept C2778559731 @default.
- W3204456443 hasConcept C2779134260 @default.
- W3204456443 hasConcept C3008058167 @default.
- W3204456443 hasConcept C36454342 @default.
- W3204456443 hasConcept C41008148 @default.
- W3204456443 hasConcept C524204448 @default.
- W3204456443 hasConcept C58471807 @default.
- W3204456443 hasConcept C71924100 @default.
- W3204456443 hasConceptScore W3204456443C119857082 @default.
- W3204456443 hasConceptScore W3204456443C126322002 @default.
- W3204456443 hasConceptScore W3204456443C126838900 @default.
- W3204456443 hasConceptScore W3204456443C127413603 @default.
- W3204456443 hasConceptScore W3204456443C147176958 @default.
- W3204456443 hasConceptScore W3204456443C154945302 @default.
- W3204456443 hasConceptScore W3204456443C167135981 @default.