Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204457271> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3204457271 abstract "Detection of disease at earlier stages is the most challenging one. Datasets of different diseases are available online with different number of features corresponding to a particular disease. Many dimensionality reduction and feature extraction techniques are used nowadays to reduce the number of features in dataset and finding the most appropriate ones. This paper explores the difference in performance of different machine learning models using Principal Component Analysis dimensionality reduction technique on the datasets of Chronic kidney disease and Cardiovascular disease. Further, the authors apply Logistic Regression, K Nearest Neighbour, Naïve Bayes, Support Vector Machine and Random Forest Model on the datasets and compare the performance of the model with and without PCA. A key challenge in the field of data mining and machine learning is building accurate and computationally efficient classifiers for medical applications. With an accuracy of 100% in chronic kidney disease and 85% for heart disease, KNN classifier and logistic regression were revealed to be the most optimal method of predictions for kidney and heart disease respectively." @default.
- W3204457271 created "2021-10-11" @default.
- W3204457271 creator A5009887396 @default.
- W3204457271 creator A5052863807 @default.
- W3204457271 creator A5060714797 @default.
- W3204457271 date "2021-08-04" @default.
- W3204457271 modified "2023-10-14" @default.
- W3204457271 title "Comparative Analysis of Machine Learning Techniques with Principal Component Analysis on Kidney and Heart Disease" @default.
- W3204457271 cites W1130077638 @default.
- W3204457271 cites W1605724357 @default.
- W3204457271 cites W2101924263 @default.
- W3204457271 cites W2109854173 @default.
- W3204457271 cites W2340431596 @default.
- W3204457271 cites W2560015483 @default.
- W3204457271 cites W2561981131 @default.
- W3204457271 cites W2563967940 @default.
- W3204457271 cites W2595077903 @default.
- W3204457271 cites W2664924928 @default.
- W3204457271 cites W2735916432 @default.
- W3204457271 cites W2742366641 @default.
- W3204457271 cites W2761207182 @default.
- W3204457271 cites W2779895460 @default.
- W3204457271 cites W2786272318 @default.
- W3204457271 cites W2802506731 @default.
- W3204457271 cites W2806333774 @default.
- W3204457271 cites W2898670678 @default.
- W3204457271 cites W2903314155 @default.
- W3204457271 cites W2908463019 @default.
- W3204457271 cites W2920362591 @default.
- W3204457271 cites W2933013505 @default.
- W3204457271 cites W2948149587 @default.
- W3204457271 cites W3038306520 @default.
- W3204457271 cites W3039479751 @default.
- W3204457271 cites W4239593161 @default.
- W3204457271 doi "https://doi.org/10.1109/icesc51422.2021.9533011" @default.
- W3204457271 hasPublicationYear "2021" @default.
- W3204457271 type Work @default.
- W3204457271 sameAs 3204457271 @default.
- W3204457271 citedByCount "5" @default.
- W3204457271 countsByYear W32044572712021 @default.
- W3204457271 countsByYear W32044572712022 @default.
- W3204457271 countsByYear W32044572712023 @default.
- W3204457271 crossrefType "proceedings-article" @default.
- W3204457271 hasAuthorship W3204457271A5009887396 @default.
- W3204457271 hasAuthorship W3204457271A5052863807 @default.
- W3204457271 hasAuthorship W3204457271A5060714797 @default.
- W3204457271 hasConcept C119857082 @default.
- W3204457271 hasConcept C12267149 @default.
- W3204457271 hasConcept C124101348 @default.
- W3204457271 hasConcept C126322002 @default.
- W3204457271 hasConcept C151956035 @default.
- W3204457271 hasConcept C153180895 @default.
- W3204457271 hasConcept C154945302 @default.
- W3204457271 hasConcept C169258074 @default.
- W3204457271 hasConcept C27438332 @default.
- W3204457271 hasConcept C2778653478 @default.
- W3204457271 hasConcept C41008148 @default.
- W3204457271 hasConcept C52001869 @default.
- W3204457271 hasConcept C52622490 @default.
- W3204457271 hasConcept C70518039 @default.
- W3204457271 hasConcept C71924100 @default.
- W3204457271 hasConcept C95623464 @default.
- W3204457271 hasConceptScore W3204457271C119857082 @default.
- W3204457271 hasConceptScore W3204457271C12267149 @default.
- W3204457271 hasConceptScore W3204457271C124101348 @default.
- W3204457271 hasConceptScore W3204457271C126322002 @default.
- W3204457271 hasConceptScore W3204457271C151956035 @default.
- W3204457271 hasConceptScore W3204457271C153180895 @default.
- W3204457271 hasConceptScore W3204457271C154945302 @default.
- W3204457271 hasConceptScore W3204457271C169258074 @default.
- W3204457271 hasConceptScore W3204457271C27438332 @default.
- W3204457271 hasConceptScore W3204457271C2778653478 @default.
- W3204457271 hasConceptScore W3204457271C41008148 @default.
- W3204457271 hasConceptScore W3204457271C52001869 @default.
- W3204457271 hasConceptScore W3204457271C52622490 @default.
- W3204457271 hasConceptScore W3204457271C70518039 @default.
- W3204457271 hasConceptScore W3204457271C71924100 @default.
- W3204457271 hasConceptScore W3204457271C95623464 @default.
- W3204457271 hasLocation W32044572711 @default.
- W3204457271 hasOpenAccess W3204457271 @default.
- W3204457271 hasPrimaryLocation W32044572711 @default.
- W3204457271 hasRelatedWork W2150085486 @default.
- W3204457271 hasRelatedWork W2979979539 @default.
- W3204457271 hasRelatedWork W3004377704 @default.
- W3204457271 hasRelatedWork W3155857781 @default.
- W3204457271 hasRelatedWork W3168994312 @default.
- W3204457271 hasRelatedWork W3204457271 @default.
- W3204457271 hasRelatedWork W4205958290 @default.
- W3204457271 hasRelatedWork W4225312515 @default.
- W3204457271 hasRelatedWork W4246246790 @default.
- W3204457271 hasRelatedWork W4281846282 @default.
- W3204457271 isParatext "false" @default.
- W3204457271 isRetracted "false" @default.
- W3204457271 magId "3204457271" @default.
- W3204457271 workType "article" @default.