Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204474674> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3204474674 endingPage "3347" @default.
- W3204474674 startingPage "3333" @default.
- W3204474674 abstract "There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gained momentum in the recent years among potential users. Connected and Autonomous Electric Vehicle (CAEV) technologies are fascinating the automakers and inducing them to manufacture connected autonomous vehicles with self-driving features such as autopilot and self-parking. Therefore, Traffic Flow Prediction (TFP) is identified as a major issue in CAEV technologies which needs to be addressed with the help of Deep Learning (DL) techniques. In this view, the current research paper presents an artificial intelligence-based parallel autoencoder for TFP, abbreviated as AIPAE-TFP model in CAEV. The presented model involves two major processes namely, feature engineering and TFP. In feature engineering process, there are multiple stages involved such as feature construction, feature selection, and feature extraction. In addition to the above, a Support Vector Data Description (SVDD) model is also used in the filtration of anomaly points and smoothen the raw data. Finally, AIPAE model is applied to determine the predictive values of traffic flow. In order to illustrate the proficiency of the model’s predictive outcomes, a set of simulations was performed and the results were investigated under distinct aspects. The experimentation outcomes verified the effectual performance of the proposed AIPAE-TFP model over other methods." @default.
- W3204474674 created "2021-10-11" @default.
- W3204474674 creator A5016938334 @default.
- W3204474674 creator A5018675654 @default.
- W3204474674 creator A5039361880 @default.
- W3204474674 creator A5042998151 @default.
- W3204474674 creator A5053800820 @default.
- W3204474674 creator A5067782776 @default.
- W3204474674 creator A5090218287 @default.
- W3204474674 date "2022-01-01" @default.
- W3204474674 modified "2023-09-26" @default.
- W3204474674 title "AI Based Traffic Flow Prediction Model for Connected and Autonomous Electric Vehicles" @default.
- W3204474674 cites W1516898087 @default.
- W3204474674 cites W2272313011 @default.
- W3204474674 cites W2337702836 @default.
- W3204474674 cites W2466175722 @default.
- W3204474674 cites W2525614189 @default.
- W3204474674 cites W2579495707 @default.
- W3204474674 cites W2611984554 @default.
- W3204474674 cites W2613403349 @default.
- W3204474674 cites W2616138986 @default.
- W3204474674 cites W2625492692 @default.
- W3204474674 cites W2731786593 @default.
- W3204474674 cites W2762158083 @default.
- W3204474674 cites W2791639158 @default.
- W3204474674 cites W2806980377 @default.
- W3204474674 cites W2883792735 @default.
- W3204474674 cites W2900068794 @default.
- W3204474674 cites W2908387388 @default.
- W3204474674 cites W2983193830 @default.
- W3204474674 cites W3106417633 @default.
- W3204474674 cites W3134095603 @default.
- W3204474674 doi "https://doi.org/10.32604/cmc.2022.020197" @default.
- W3204474674 hasPublicationYear "2022" @default.
- W3204474674 type Work @default.
- W3204474674 sameAs 3204474674 @default.
- W3204474674 citedByCount "5" @default.
- W3204474674 countsByYear W32044746742022 @default.
- W3204474674 crossrefType "journal-article" @default.
- W3204474674 hasAuthorship W3204474674A5016938334 @default.
- W3204474674 hasAuthorship W3204474674A5018675654 @default.
- W3204474674 hasAuthorship W3204474674A5039361880 @default.
- W3204474674 hasAuthorship W3204474674A5042998151 @default.
- W3204474674 hasAuthorship W3204474674A5053800820 @default.
- W3204474674 hasAuthorship W3204474674A5067782776 @default.
- W3204474674 hasAuthorship W3204474674A5090218287 @default.
- W3204474674 hasBestOaLocation W32044746741 @default.
- W3204474674 hasConcept C101738243 @default.
- W3204474674 hasConcept C108583219 @default.
- W3204474674 hasConcept C115901376 @default.
- W3204474674 hasConcept C119857082 @default.
- W3204474674 hasConcept C124101348 @default.
- W3204474674 hasConcept C127413603 @default.
- W3204474674 hasConcept C138885662 @default.
- W3204474674 hasConcept C146978453 @default.
- W3204474674 hasConcept C154945302 @default.
- W3204474674 hasConcept C2776401178 @default.
- W3204474674 hasConcept C41008148 @default.
- W3204474674 hasConcept C41895202 @default.
- W3204474674 hasConcept C526921623 @default.
- W3204474674 hasConcept C78519656 @default.
- W3204474674 hasConceptScore W3204474674C101738243 @default.
- W3204474674 hasConceptScore W3204474674C108583219 @default.
- W3204474674 hasConceptScore W3204474674C115901376 @default.
- W3204474674 hasConceptScore W3204474674C119857082 @default.
- W3204474674 hasConceptScore W3204474674C124101348 @default.
- W3204474674 hasConceptScore W3204474674C127413603 @default.
- W3204474674 hasConceptScore W3204474674C138885662 @default.
- W3204474674 hasConceptScore W3204474674C146978453 @default.
- W3204474674 hasConceptScore W3204474674C154945302 @default.
- W3204474674 hasConceptScore W3204474674C2776401178 @default.
- W3204474674 hasConceptScore W3204474674C41008148 @default.
- W3204474674 hasConceptScore W3204474674C41895202 @default.
- W3204474674 hasConceptScore W3204474674C526921623 @default.
- W3204474674 hasConceptScore W3204474674C78519656 @default.
- W3204474674 hasIssue "2" @default.
- W3204474674 hasLocation W32044746741 @default.
- W3204474674 hasOpenAccess W3204474674 @default.
- W3204474674 hasPrimaryLocation W32044746741 @default.
- W3204474674 hasRelatedWork W2669956259 @default.
- W3204474674 hasRelatedWork W2939353110 @default.
- W3204474674 hasRelatedWork W3165097609 @default.
- W3204474674 hasRelatedWork W3165463024 @default.
- W3204474674 hasRelatedWork W4223943233 @default.
- W3204474674 hasRelatedWork W4287178339 @default.
- W3204474674 hasRelatedWork W4312200629 @default.
- W3204474674 hasRelatedWork W4327774331 @default.
- W3204474674 hasRelatedWork W4360585206 @default.
- W3204474674 hasRelatedWork W4380075502 @default.
- W3204474674 hasVolume "70" @default.
- W3204474674 isParatext "false" @default.
- W3204474674 isRetracted "false" @default.
- W3204474674 magId "3204474674" @default.
- W3204474674 workType "article" @default.