Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204476840> ?p ?o ?g. }
- W3204476840 endingPage "288" @default.
- W3204476840 startingPage "275" @default.
- W3204476840 abstract "In the domain of water treatment, improving the efficiency of wastewater treatment plants (WWTPs) has highlighted the need to model certain concentrations and variables characteristic of effluents. Artificial intelligence is an effective tool for monitoring WWTPs and modeling their complex processes. This chapter presents an application of multilayer perceptron (MLP) neural network MLP with two learning algorithms [conjugate gradient (CG) and Broyden–Fletcher–Goldfarb–Shanno (BFGS)] and support vector machine (SVM) model for predicting efficiency of WWTP in terms of effluent chemical oxygen demand (CODeff) and total suspended solids (SSeff). The dataset includes a total of 295 data points that are divided into two phases: training and testing. On the basis of inputs combination, different models are trained and the good fit input combination is examined. The performances of different developed models during the two phases (train and test) are evaluated from a comparison between the observed CODeff, and SSeff values and the predicted CODeff and SSeff values to define the good fit prediction model. Two performance indices like root mean square error (RMSE) and coefficient of determination (R2) are estimated for all developed models (SVM, MLPCG, and MLPBFGS). In the testing phase, the SVM model has an RMSE for SSeff and CODeff varying from 1.375 to 2.384 mg L−1. Using MLPCG model, the RMSE is reduced from 1.154 to 2.038 mg L−1. The RMSE is more reduced with MLPBFGS model (from 0.941 to 1.982 mg L−1). The results showed that MLPBFGS model may be a very useful tool for perfect prediction and process control of WWTPs." @default.
- W3204476840 created "2021-10-11" @default.
- W3204476840 creator A5031331810 @default.
- W3204476840 creator A5036047380 @default.
- W3204476840 creator A5051158211 @default.
- W3204476840 creator A5091220644 @default.
- W3204476840 date "2021-01-01" @default.
- W3204476840 modified "2023-09-26" @default.
- W3204476840 title "Prediction of Effluent Chemical Oxygen Demand and Suspended Solids From a Domestic Wastewater Treatment Plant Using SVM and ANN" @default.
- W3204476840 cites W1543335190 @default.
- W3204476840 cites W1587355046 @default.
- W3204476840 cites W1969108904 @default.
- W3204476840 cites W1970360626 @default.
- W3204476840 cites W1972885193 @default.
- W3204476840 cites W1984162388 @default.
- W3204476840 cites W1999149213 @default.
- W3204476840 cites W2002134958 @default.
- W3204476840 cites W2007262340 @default.
- W3204476840 cites W2017978747 @default.
- W3204476840 cites W2059666149 @default.
- W3204476840 cites W2064591752 @default.
- W3204476840 cites W2067336855 @default.
- W3204476840 cites W2071214038 @default.
- W3204476840 cites W2072421553 @default.
- W3204476840 cites W2089520838 @default.
- W3204476840 cites W2092265008 @default.
- W3204476840 cites W2116208608 @default.
- W3204476840 cites W2137579217 @default.
- W3204476840 cites W2142129184 @default.
- W3204476840 cites W2149298154 @default.
- W3204476840 cites W2163148207 @default.
- W3204476840 cites W2286041039 @default.
- W3204476840 cites W2296210273 @default.
- W3204476840 cites W2568841330 @default.
- W3204476840 cites W2576459012 @default.
- W3204476840 cites W2581896076 @default.
- W3204476840 cites W2632349138 @default.
- W3204476840 cites W2771100845 @default.
- W3204476840 cites W2888300933 @default.
- W3204476840 cites W2901048536 @default.
- W3204476840 cites W2911352573 @default.
- W3204476840 cites W2924962937 @default.
- W3204476840 cites W2966651448 @default.
- W3204476840 cites W2972503947 @default.
- W3204476840 cites W2986617680 @default.
- W3204476840 cites W3000434541 @default.
- W3204476840 cites W3003785342 @default.
- W3204476840 cites W3012117323 @default.
- W3204476840 cites W3026722813 @default.
- W3204476840 cites W3039136612 @default.
- W3204476840 cites W3089709731 @default.
- W3204476840 cites W3107903525 @default.
- W3204476840 cites W4230943419 @default.
- W3204476840 cites W4239510810 @default.
- W3204476840 doi "https://doi.org/10.1016/b978-0-12-824463-0.00018-5" @default.
- W3204476840 hasPublicationYear "2021" @default.
- W3204476840 type Work @default.
- W3204476840 sameAs 3204476840 @default.
- W3204476840 citedByCount "1" @default.
- W3204476840 countsByYear W32044768402023 @default.
- W3204476840 crossrefType "book-chapter" @default.
- W3204476840 hasAuthorship W3204476840A5031331810 @default.
- W3204476840 hasAuthorship W3204476840A5036047380 @default.
- W3204476840 hasAuthorship W3204476840A5051158211 @default.
- W3204476840 hasAuthorship W3204476840A5091220644 @default.
- W3204476840 hasConcept C105795698 @default.
- W3204476840 hasConcept C119857082 @default.
- W3204476840 hasConcept C12267149 @default.
- W3204476840 hasConcept C127413603 @default.
- W3204476840 hasConcept C128990827 @default.
- W3204476840 hasConcept C132721684 @default.
- W3204476840 hasConcept C139945424 @default.
- W3204476840 hasConcept C147455438 @default.
- W3204476840 hasConcept C151319957 @default.
- W3204476840 hasConcept C154945302 @default.
- W3204476840 hasConcept C179717631 @default.
- W3204476840 hasConcept C188287460 @default.
- W3204476840 hasConcept C19570952 @default.
- W3204476840 hasConcept C198302294 @default.
- W3204476840 hasConcept C31258907 @default.
- W3204476840 hasConcept C33923547 @default.
- W3204476840 hasConcept C41008148 @default.
- W3204476840 hasConcept C4891672 @default.
- W3204476840 hasConcept C50644808 @default.
- W3204476840 hasConcept C87717796 @default.
- W3204476840 hasConcept C94061648 @default.
- W3204476840 hasConceptScore W3204476840C105795698 @default.
- W3204476840 hasConceptScore W3204476840C119857082 @default.
- W3204476840 hasConceptScore W3204476840C12267149 @default.
- W3204476840 hasConceptScore W3204476840C127413603 @default.
- W3204476840 hasConceptScore W3204476840C128990827 @default.
- W3204476840 hasConceptScore W3204476840C132721684 @default.
- W3204476840 hasConceptScore W3204476840C139945424 @default.
- W3204476840 hasConceptScore W3204476840C147455438 @default.
- W3204476840 hasConceptScore W3204476840C151319957 @default.
- W3204476840 hasConceptScore W3204476840C154945302 @default.
- W3204476840 hasConceptScore W3204476840C179717631 @default.
- W3204476840 hasConceptScore W3204476840C188287460 @default.