Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204507716> ?p ?o ?g. }
- W3204507716 endingPage "23601" @default.
- W3204507716 startingPage "23586" @default.
- W3204507716 abstract "We report a comprehensive computational study of unsupervised machine learning for extraction of chemically relevant information in X-ray absorption near edge structure (XANES) and in valence-to-core X-ray emission spectra (VtC-XES) for classification of a broad ensemble of sulphorganic molecules. By progressively decreasing the constraining assumptions of the unsupervised machine learning algorithm, moving from principal component analysis (PCA) to a variational autoencoder (VAE) to t-distributed stochastic neighbour embedding (t-SNE), we find improved sensitivity to steadily more refined chemical information. Surprisingly, when embedding the ensemble of spectra in merely two dimensions, t-SNE distinguishes not just oxidation state and general sulphur bonding environment but also the aromaticity of the bonding radical group with 87% accuracy as well as identifying even finer details in electronic structure within aromatic or aliphatic sub-classes. We find that the chemical information in XANES and VtC-XES is very similar in character and content, although they unexpectedly have different sensitivity within a given molecular class. We also discuss likely benefits from further effort with unsupervised machine learning and from the interplay between supervised and unsupervised machine learning for X-ray spectroscopies. Our overall results, i.e., the ability to reliably classify without user bias and to discover unexpected chemical signatures for XANES and VtC-XES, likely generalize to other systems as well as to other one-dimensional chemical spectroscopies." @default.
- W3204507716 created "2021-10-11" @default.
- W3204507716 creator A5013479658 @default.
- W3204507716 creator A5042193329 @default.
- W3204507716 creator A5058960799 @default.
- W3204507716 date "2021-01-01" @default.
- W3204507716 modified "2023-10-14" @default.
- W3204507716 title "Unsupervised machine learning for unbiased chemical classification in X-ray absorption spectroscopy and X-ray emission spectroscopy" @default.
- W3204507716 cites W1590183771 @default.
- W3204507716 cites W1902027874 @default.
- W3204507716 cites W1965092590 @default.
- W3204507716 cites W1978450379 @default.
- W3204507716 cites W1982996670 @default.
- W3204507716 cites W1983921735 @default.
- W3204507716 cites W1992985800 @default.
- W3204507716 cites W1993901339 @default.
- W3204507716 cites W2001981171 @default.
- W3204507716 cites W2004839417 @default.
- W3204507716 cites W2008423326 @default.
- W3204507716 cites W2028962886 @default.
- W3204507716 cites W2033990154 @default.
- W3204507716 cites W2043327592 @default.
- W3204507716 cites W2046412723 @default.
- W3204507716 cites W2047031565 @default.
- W3204507716 cites W2049662606 @default.
- W3204507716 cites W2054816982 @default.
- W3204507716 cites W2056221802 @default.
- W3204507716 cites W2064200100 @default.
- W3204507716 cites W2070227796 @default.
- W3204507716 cites W2075888519 @default.
- W3204507716 cites W2080897268 @default.
- W3204507716 cites W2089468765 @default.
- W3204507716 cites W2094642658 @default.
- W3204507716 cites W2100495367 @default.
- W3204507716 cites W2110327245 @default.
- W3204507716 cites W2112845989 @default.
- W3204507716 cites W2114704115 @default.
- W3204507716 cites W2123649031 @default.
- W3204507716 cites W2143981217 @default.
- W3204507716 cites W2147717514 @default.
- W3204507716 cites W2152152303 @default.
- W3204507716 cites W2159374329 @default.
- W3204507716 cites W2160174308 @default.
- W3204507716 cites W2288345198 @default.
- W3204507716 cites W2290983583 @default.
- W3204507716 cites W2316548329 @default.
- W3204507716 cites W2330270681 @default.
- W3204507716 cites W2337003914 @default.
- W3204507716 cites W2463129296 @default.
- W3204507716 cites W2466120442 @default.
- W3204507716 cites W2734248522 @default.
- W3204507716 cites W2757533756 @default.
- W3204507716 cites W2777416523 @default.
- W3204507716 cites W2794704841 @default.
- W3204507716 cites W2806218200 @default.
- W3204507716 cites W2884430236 @default.
- W3204507716 cites W2892351892 @default.
- W3204507716 cites W2896905029 @default.
- W3204507716 cites W2902474924 @default.
- W3204507716 cites W2907976907 @default.
- W3204507716 cites W2914766664 @default.
- W3204507716 cites W2915199079 @default.
- W3204507716 cites W2924564326 @default.
- W3204507716 cites W2945532623 @default.
- W3204507716 cites W2948507198 @default.
- W3204507716 cites W2950217348 @default.
- W3204507716 cites W2963327119 @default.
- W3204507716 cites W2972243934 @default.
- W3204507716 cites W2977127463 @default.
- W3204507716 cites W2982190756 @default.
- W3204507716 cites W2982407225 @default.
- W3204507716 cites W2993477841 @default.
- W3204507716 cites W2996143433 @default.
- W3204507716 cites W2996274328 @default.
- W3204507716 cites W2997960618 @default.
- W3204507716 cites W2999277653 @default.
- W3204507716 cites W3003360887 @default.
- W3204507716 cites W3004465863 @default.
- W3204507716 cites W3012727703 @default.
- W3204507716 cites W3015528262 @default.
- W3204507716 cites W3017857093 @default.
- W3204507716 cites W3023114766 @default.
- W3204507716 cites W3029459301 @default.
- W3204507716 cites W3033619354 @default.
- W3204507716 cites W3044067238 @default.
- W3204507716 cites W3044174201 @default.
- W3204507716 cites W3045792597 @default.
- W3204507716 cites W3049774692 @default.
- W3204507716 cites W3100072999 @default.
- W3204507716 cites W3102349667 @default.
- W3204507716 cites W3104098743 @default.
- W3204507716 cites W3104203601 @default.
- W3204507716 cites W3111200259 @default.
- W3204507716 cites W3122702647 @default.
- W3204507716 cites W3129057308 @default.
- W3204507716 cites W3129702700 @default.
- W3204507716 cites W3133545462 @default.
- W3204507716 cites W3137023124 @default.