Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204525523> ?p ?o ?g. }
- W3204525523 abstract "Abstract Background Transfer learning is a form of machine learning where a pre-trained model trained on a specific task is reused as a starting point and tailored to another task in a different dataset. While transfer learning has garnered considerable attention in medical image analysis, its use for clinical non-image data is not well studied. Therefore, the objective of this scoping review was to explore the use of transfer learning for non-image data in the clinical literature. Methods and Findings We systematically searched medical databases (PubMed, EMBASE, CINAHL) for peer-reviewed clinical studies that used transfer learning on human non-image data. We included 83 studies in the review. More than half of the studies (63%) were published within 12 months of the search. Transfer learning was most often applied to time series data (61%), followed by tabular data (18%), audio (12%) and text (8%). Thirty-three (40%) studies applied an image-based model to non-image data after transforming data into images (e.g. spectrograms). Twenty-nine (35%) studies did not have any authors with a health-related affiliation. Many studies used publicly available datasets (66%) and models (49%), but fewer shared their code (27%). Conclusions In this scoping review, we have described current trends in the use of transfer learning for non-image data in the clinical literature. We found that the use of transfer learning has grown rapidly within the last few years. We have identified studies and demonstrated the potential of transfer learning in clinical research in a wide range of medical specialties. More interdisciplinary collaborations and the wider adaption of reproducible research principles are needed to increase the impact of transfer learning in clinical research." @default.
- W3204525523 created "2021-10-11" @default.
- W3204525523 creator A5006594137 @default.
- W3204525523 creator A5023385059 @default.
- W3204525523 creator A5031484263 @default.
- W3204525523 creator A5064931812 @default.
- W3204525523 creator A5079096335 @default.
- W3204525523 date "2021-10-03" @default.
- W3204525523 modified "2023-10-15" @default.
- W3204525523 title "Transfer learning for non-image data in clinical research: a scoping review" @default.
- W3204525523 cites W1494198834 @default.
- W3204525523 cites W1995228216 @default.
- W3204525523 cites W2051411536 @default.
- W3204525523 cites W2082704080 @default.
- W3204525523 cites W2097117768 @default.
- W3204525523 cites W2108598243 @default.
- W3204525523 cites W2149441684 @default.
- W3204525523 cites W2162800060 @default.
- W3204525523 cites W2165698076 @default.
- W3204525523 cites W2183341477 @default.
- W3204525523 cites W2194775991 @default.
- W3204525523 cites W2302501749 @default.
- W3204525523 cites W2396881363 @default.
- W3204525523 cites W2593116425 @default.
- W3204525523 cites W2618530766 @default.
- W3204525523 cites W2795157542 @default.
- W3204525523 cites W2888412583 @default.
- W3204525523 cites W2891378911 @default.
- W3204525523 cites W2901669506 @default.
- W3204525523 cites W2908201961 @default.
- W3204525523 cites W2916994700 @default.
- W3204525523 cites W2924118783 @default.
- W3204525523 cites W2928444936 @default.
- W3204525523 cites W2962984603 @default.
- W3204525523 cites W2963647538 @default.
- W3204525523 cites W2963919481 @default.
- W3204525523 cites W2964317695 @default.
- W3204525523 cites W2967781381 @default.
- W3204525523 cites W2983650611 @default.
- W3204525523 cites W2987769531 @default.
- W3204525523 cites W2999103859 @default.
- W3204525523 cites W2999204501 @default.
- W3204525523 cites W2999615587 @default.
- W3204525523 cites W3003074332 @default.
- W3204525523 cites W3003725665 @default.
- W3204525523 cites W3003943678 @default.
- W3204525523 cites W3011086304 @default.
- W3204525523 cites W3013462789 @default.
- W3204525523 cites W3013605954 @default.
- W3204525523 cites W3014919767 @default.
- W3204525523 cites W3017637887 @default.
- W3204525523 cites W3019069635 @default.
- W3204525523 cites W3020996329 @default.
- W3204525523 cites W3027572331 @default.
- W3204525523 cites W3028304854 @default.
- W3204525523 cites W3028393291 @default.
- W3204525523 cites W3029730018 @default.
- W3204525523 cites W3032709845 @default.
- W3204525523 cites W3035625694 @default.
- W3204525523 cites W3036692032 @default.
- W3204525523 cites W3041535404 @default.
- W3204525523 cites W3080429061 @default.
- W3204525523 cites W3083913352 @default.
- W3204525523 cites W3084228385 @default.
- W3204525523 cites W3084493059 @default.
- W3204525523 cites W3084949122 @default.
- W3204525523 cites W3085048973 @default.
- W3204525523 cites W3087002002 @default.
- W3204525523 cites W3092398080 @default.
- W3204525523 cites W3093156908 @default.
- W3204525523 cites W3094483422 @default.
- W3204525523 cites W3095923788 @default.
- W3204525523 cites W3100321043 @default.
- W3204525523 cites W3101149558 @default.
- W3204525523 cites W3105837102 @default.
- W3204525523 cites W3108971693 @default.
- W3204525523 cites W3110006982 @default.
- W3204525523 cites W3111419336 @default.
- W3204525523 cites W3112116031 @default.
- W3204525523 cites W3112653481 @default.
- W3204525523 cites W3115048207 @default.
- W3204525523 cites W3118615836 @default.
- W3204525523 cites W3118794207 @default.
- W3204525523 cites W3120417244 @default.
- W3204525523 cites W3120766804 @default.
- W3204525523 cites W3122886537 @default.
- W3204525523 cites W3124141153 @default.
- W3204525523 cites W3125401821 @default.
- W3204525523 cites W3126192134 @default.
- W3204525523 cites W3127181174 @default.
- W3204525523 cites W3128939245 @default.
- W3204525523 cites W3131846890 @default.
- W3204525523 cites W3133313394 @default.
- W3204525523 cites W3135891860 @default.
- W3204525523 cites W3137217840 @default.
- W3204525523 cites W3137901888 @default.
- W3204525523 cites W3143596470 @default.
- W3204525523 cites W3151382523 @default.
- W3204525523 cites W3153683258 @default.
- W3204525523 cites W3156027765 @default.