Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204528122> ?p ?o ?g. }
- W3204528122 endingPage "17" @default.
- W3204528122 startingPage "1" @default.
- W3204528122 abstract "Tree species identification and their geospatial distribution mapping are crucial for forest monitoring and management. The satellite-based remote sensing time series of Sentinel missions (Sentinel-1 and Sentinel-2) are a perfect tool to map the type, location, and extent of forest cover over large areas at local or global scale. This study is focused on the geospatial mapping of the endemic argan tree (Argania spinosa (L.) Skeels) and the identification of two other tree species (sandarac gum and olive trees) using optical and synthetic aperture radar (SAR) time series. The objective of the present work is to detect the actual state of forest species trees, more specifically the argan tree, in order to be able to study and analyze forest changes (degradation) and make new strategies to protect this endemic tree. The study was conducted over an area located in Essaouira province, Morocco. The support vector machine (SVM) algorithm was used for the classification of the two types of data. We first classified the optical data for tree species identification and mapping. Second, the SAR time series were used to identify the argan tree and distinguish it from other species. Finally, the two types of satellite images were combined to improve and compare the results of classification with those obtained from single-source data. The overall accuracy (OA) of optical classification reached 86.9% with a kappa coefficient of 0.84 and declined strongly to 37.22% (kappa of 0.29) for SAR classification. The fusion of multisensor data (optical and SAR images) reached an OA of 86.51%. A postclassification was performed to improve the results. The classified images were smoothed, and therefore, the quantitative and qualitative results showed an improvement, in particular for optical classification with a highest OA of 89.78% (kappa coefficient of 0.88). The study confirmed the potential of the multitemporal optical data for accurate forest cover mapping and endemic species identification." @default.
- W3204528122 created "2021-10-11" @default.
- W3204528122 creator A5007995394 @default.
- W3204528122 creator A5025271895 @default.
- W3204528122 creator A5029136880 @default.
- W3204528122 creator A5070865538 @default.
- W3204528122 date "2021-10-05" @default.
- W3204528122 modified "2023-09-25" @default.
- W3204528122 title "Argan Tree (Argania spinosa (L.) Skeels) Mapping Based on Multisensor Fusion of Satellite Imagery in Essaouira Province, Morocco" @default.
- W3204528122 cites W1967400946 @default.
- W3204528122 cites W1977438473 @default.
- W3204528122 cites W1984670836 @default.
- W3204528122 cites W1985166309 @default.
- W3204528122 cites W2010364553 @default.
- W3204528122 cites W2012950829 @default.
- W3204528122 cites W2022951022 @default.
- W3204528122 cites W2031929505 @default.
- W3204528122 cites W2037206507 @default.
- W3204528122 cites W2044465660 @default.
- W3204528122 cites W2053154970 @default.
- W3204528122 cites W2056435747 @default.
- W3204528122 cites W2061670623 @default.
- W3204528122 cites W2063623478 @default.
- W3204528122 cites W2064666391 @default.
- W3204528122 cites W2068685599 @default.
- W3204528122 cites W2076656703 @default.
- W3204528122 cites W2077591638 @default.
- W3204528122 cites W2079834399 @default.
- W3204528122 cites W2089402914 @default.
- W3204528122 cites W2120958899 @default.
- W3204528122 cites W2141815566 @default.
- W3204528122 cites W2248623186 @default.
- W3204528122 cites W2417266068 @default.
- W3204528122 cites W2463445076 @default.
- W3204528122 cites W2520905560 @default.
- W3204528122 cites W2531213996 @default.
- W3204528122 cites W2556096538 @default.
- W3204528122 cites W2560742403 @default.
- W3204528122 cites W2585014453 @default.
- W3204528122 cites W2585309444 @default.
- W3204528122 cites W2586183169 @default.
- W3204528122 cites W2597944323 @default.
- W3204528122 cites W2604870469 @default.
- W3204528122 cites W2610199124 @default.
- W3204528122 cites W2650011260 @default.
- W3204528122 cites W2745131289 @default.
- W3204528122 cites W2768921697 @default.
- W3204528122 cites W2769642400 @default.
- W3204528122 cites W2774810635 @default.
- W3204528122 cites W2780240127 @default.
- W3204528122 cites W2792431031 @default.
- W3204528122 cites W2794233697 @default.
- W3204528122 cites W2808487575 @default.
- W3204528122 cites W2883189766 @default.
- W3204528122 cites W2891711602 @default.
- W3204528122 cites W2895854890 @default.
- W3204528122 cites W2907353757 @default.
- W3204528122 cites W2913065079 @default.
- W3204528122 cites W2929890216 @default.
- W3204528122 cites W2981754813 @default.
- W3204528122 cites W3002769825 @default.
- W3204528122 cites W3033800829 @default.
- W3204528122 cites W3034612636 @default.
- W3204528122 cites W3039947102 @default.
- W3204528122 cites W3107814472 @default.
- W3204528122 cites W3109162687 @default.
- W3204528122 cites W3112623030 @default.
- W3204528122 cites W3124230828 @default.
- W3204528122 cites W3129597066 @default.
- W3204528122 cites W3130550871 @default.
- W3204528122 cites W3134130181 @default.
- W3204528122 cites W3158787088 @default.
- W3204528122 doi "https://doi.org/10.1155/2021/6679914" @default.
- W3204528122 hasPublicationYear "2021" @default.
- W3204528122 type Work @default.
- W3204528122 sameAs 3204528122 @default.
- W3204528122 citedByCount "0" @default.
- W3204528122 crossrefType "journal-article" @default.
- W3204528122 hasAuthorship W3204528122A5007995394 @default.
- W3204528122 hasAuthorship W3204528122A5025271895 @default.
- W3204528122 hasAuthorship W3204528122A5029136880 @default.
- W3204528122 hasAuthorship W3204528122A5070865538 @default.
- W3204528122 hasBestOaLocation W32045281221 @default.
- W3204528122 hasConcept C113174947 @default.
- W3204528122 hasConcept C12267149 @default.
- W3204528122 hasConcept C127413603 @default.
- W3204528122 hasConcept C134306372 @default.
- W3204528122 hasConcept C146978453 @default.
- W3204528122 hasConcept C154945302 @default.
- W3204528122 hasConcept C19269812 @default.
- W3204528122 hasConcept C205649164 @default.
- W3204528122 hasConcept C33923547 @default.
- W3204528122 hasConcept C39432304 @default.
- W3204528122 hasConcept C41008148 @default.
- W3204528122 hasConcept C62649853 @default.
- W3204528122 hasConcept C87360688 @default.
- W3204528122 hasConcept C9770341 @default.
- W3204528122 hasConceptScore W3204528122C113174947 @default.