Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204548988> ?p ?o ?g. }
- W3204548988 endingPage "112853" @default.
- W3204548988 startingPage "112853" @default.
- W3204548988 abstract "Climate change and the consequent alteration in agricultural circumstances enhance the susceptibility of fresh water use particularly in water-scarce regions. Marginal quality water reuse is a common alternative practice but possible perils of metal accretion in plant parts are mostly ignored. The present research aimed to probe the impact of treated wastewater (TWW) and untreated wastewater (UTWW) on metal accumulation in flower petals and their influence on essential oil contents of fragrant Rosa species (R. Gruss-an-teplitz, R. bourboniana, R. centifolia, R. damascena) in a peri-urban area of Faisalabad, Pakistan during January, 2017 to December, 2018. The mineral and chemical contents in canal water (CW) and TWW were less than recommended levels of national environmental quality standards (NEQS) for wastewater of Pakistan. The experimentally UTWW possessed higher electrical conductivity (EC), biological and chemical oxygen demand (BOD and COD), and some metals (Pb, Co, Cr) that were above the permissible levels. The experimental data revealed that except Cr other metals contents in the flower petals were less than the WHO recommended limits (for medicinal plants) under experimental irrigation regimes. Rosa centifolia and R. damascena possessed higher metal i.e. Zn, Cu, Pb, Cr, Co contents while Fe and Ni contents were higher in R. Gruss-an-Teplitz and R. bourboniana respectively. There were twelve constituents which were detected in essential oil by gas chromatography. Major constituents were phenyl ethyl alcohol, citronellol, geranyl acetate, γ- undelactone, methyl eugenol, and limonene whose share was 48.17%, 41.11%, 8.46%, 4.82%, 4.44%, and 4.15% respectively whereas concentrations of other 06 constituents were less than 3.7%. Phenyl ethyl alcohol, lion shared constituent of essential oil was found highest (48.17%) in R. Gruss-an-Teplitz whereas minimum level was recorded in R. damascena (28.84%) under CW. In contrast, citronellol (chief component of fragrance) was highest in R. damascena (41.11%) in UTWW while the lowest level was found in R. Gruss-an-Teplitz (17.41%) in CW. This study confirmed the variations in metal concentrations of Rosa species due to different absorbability of each metal in flower petals. It also indicates that wastewater did not affect the composition but there were quantitative differences in aroma constituents and chemical composition of essential oil." @default.
- W3204548988 created "2021-10-11" @default.
- W3204548988 creator A5011614044 @default.
- W3204548988 creator A5023580556 @default.
- W3204548988 creator A5024745800 @default.
- W3204548988 creator A5024780791 @default.
- W3204548988 creator A5025923627 @default.
- W3204548988 creator A5032433930 @default.
- W3204548988 creator A5038864323 @default.
- W3204548988 creator A5042182523 @default.
- W3204548988 creator A5052160642 @default.
- W3204548988 creator A5052542613 @default.
- W3204548988 creator A5055759722 @default.
- W3204548988 creator A5059850380 @default.
- W3204548988 creator A5077553891 @default.
- W3204548988 creator A5083213717 @default.
- W3204548988 creator A5087216560 @default.
- W3204548988 creator A5087302355 @default.
- W3204548988 date "2021-12-01" @default.
- W3204548988 modified "2023-10-08" @default.
- W3204548988 title "Marginal quality water arbitrated essential oil contents in metal hoarded flower petals of scented roses" @default.
- W3204548988 cites W1784403820 @default.
- W3204548988 cites W1824293352 @default.
- W3204548988 cites W1854143638 @default.
- W3204548988 cites W1873987754 @default.
- W3204548988 cites W1968582748 @default.
- W3204548988 cites W1969543763 @default.
- W3204548988 cites W1971702133 @default.
- W3204548988 cites W1972153086 @default.
- W3204548988 cites W1974948717 @default.
- W3204548988 cites W1976826861 @default.
- W3204548988 cites W1983169890 @default.
- W3204548988 cites W1988032397 @default.
- W3204548988 cites W1993806577 @default.
- W3204548988 cites W2027444299 @default.
- W3204548988 cites W2047321989 @default.
- W3204548988 cites W2053333352 @default.
- W3204548988 cites W2058433237 @default.
- W3204548988 cites W2060896662 @default.
- W3204548988 cites W2065102018 @default.
- W3204548988 cites W2070894373 @default.
- W3204548988 cites W2077564564 @default.
- W3204548988 cites W2081752400 @default.
- W3204548988 cites W2083356915 @default.
- W3204548988 cites W2088769180 @default.
- W3204548988 cites W2090607748 @default.
- W3204548988 cites W2104237754 @default.
- W3204548988 cites W2345416387 @default.
- W3204548988 cites W2515031866 @default.
- W3204548988 cites W2549186206 @default.
- W3204548988 cites W2553241033 @default.
- W3204548988 cites W2588111342 @default.
- W3204548988 cites W2725628177 @default.
- W3204548988 cites W2794557448 @default.
- W3204548988 cites W2809935096 @default.
- W3204548988 cites W2911700627 @default.
- W3204548988 cites W2913081641 @default.
- W3204548988 cites W2914108018 @default.
- W3204548988 cites W2941078122 @default.
- W3204548988 cites W2942992593 @default.
- W3204548988 cites W2952576506 @default.
- W3204548988 cites W2953389426 @default.
- W3204548988 cites W2955287284 @default.
- W3204548988 cites W2970153311 @default.
- W3204548988 cites W2989724215 @default.
- W3204548988 cites W2995572431 @default.
- W3204548988 cites W3006078097 @default.
- W3204548988 cites W3036166481 @default.
- W3204548988 cites W3047520867 @default.
- W3204548988 cites W3083181550 @default.
- W3204548988 cites W3127127128 @default.
- W3204548988 cites W3163114400 @default.
- W3204548988 cites W3167177970 @default.
- W3204548988 cites W3173114962 @default.
- W3204548988 cites W4244789187 @default.
- W3204548988 cites W980902791 @default.
- W3204548988 doi "https://doi.org/10.1016/j.ecoenv.2021.112853" @default.
- W3204548988 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34619475" @default.
- W3204548988 hasPublicationYear "2021" @default.
- W3204548988 type Work @default.
- W3204548988 sameAs 3204548988 @default.
- W3204548988 citedByCount "2" @default.
- W3204548988 countsByYear W32045489882022 @default.
- W3204548988 countsByYear W32045489882023 @default.
- W3204548988 crossrefType "journal-article" @default.
- W3204548988 hasAuthorship W3204548988A5011614044 @default.
- W3204548988 hasAuthorship W3204548988A5023580556 @default.
- W3204548988 hasAuthorship W3204548988A5024745800 @default.
- W3204548988 hasAuthorship W3204548988A5024780791 @default.
- W3204548988 hasAuthorship W3204548988A5025923627 @default.
- W3204548988 hasAuthorship W3204548988A5032433930 @default.
- W3204548988 hasAuthorship W3204548988A5038864323 @default.
- W3204548988 hasAuthorship W3204548988A5042182523 @default.
- W3204548988 hasAuthorship W3204548988A5052160642 @default.
- W3204548988 hasAuthorship W3204548988A5052542613 @default.
- W3204548988 hasAuthorship W3204548988A5055759722 @default.
- W3204548988 hasAuthorship W3204548988A5059850380 @default.
- W3204548988 hasAuthorship W3204548988A5077553891 @default.