Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204555464> ?p ?o ?g. }
- W3204555464 endingPage "578" @default.
- W3204555464 startingPage "561" @default.
- W3204555464 abstract "Presently, Supervisory Control and Data Acquisition (SCADA) systems are broadly adopted in remote monitoring large-scale production systems and modern power grids. However, SCADA systems are continuously exposed to various heterogeneous cyberattacks, making the detection task using the conventional intrusion detection systems (IDSs) very challenging. Furthermore, conventional security solutions, such as firewalls, and antivirus software, are not appropriate for fully protecting SCADA systems because they have distinct specifications. Thus, accurately detecting cyber-attacks in critical SCADA systems is undoubtedly indispensable to enhance their resilience, ensure safe operations, and avoid costly maintenance. The overarching goal of this paper is to detect malicious intrusions that already detoured traditional IDS and firewalls. In this paper, a stacked deep learning method is introduced to identify malicious attacks targeting SCADA systems. Specifically, we investigate the feasibility of a deep learning approach for intrusion detection in SCADA systems. Real data sets from two laboratory-scale SCADA systems, a two-line three-bus power transmission system and a gas pipeline are used to evaluate the proposed method's performance. The results of this investigation show the satisfying detection performance of the proposed stacked deep learning approach. This study also showed that the proposed approach outperformed the standalone deep learning models and the state-of-the-art algorithms, including Nearest neighbor, Random forests, Naive Bayes, Adaboost, Support Vector Machine, and oneR. Besides detecting the malicious attacks, we also investigate the feature importance of the cyber-attacks detection process using the Random Forest procedure, which helps design more parsimonious models." @default.
- W3204555464 created "2021-10-11" @default.
- W3204555464 creator A5034175808 @default.
- W3204555464 creator A5059374757 @default.
- W3204555464 creator A5071486132 @default.
- W3204555464 creator A5087572406 @default.
- W3204555464 creator A5090118631 @default.
- W3204555464 date "2021-10-05" @default.
- W3204555464 modified "2023-10-02" @default.
- W3204555464 title "A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas pipeline systems" @default.
- W3204555464 cites W1546161534 @default.
- W3204555464 cites W195047088 @default.
- W3204555464 cites W1963998826 @default.
- W3204555464 cites W1974853427 @default.
- W3204555464 cites W1975846642 @default.
- W3204555464 cites W1978514793 @default.
- W3204555464 cites W2012446724 @default.
- W3204555464 cites W2033939184 @default.
- W3204555464 cites W2055289210 @default.
- W3204555464 cites W2060479059 @default.
- W3204555464 cites W2099545301 @default.
- W3204555464 cites W2117130368 @default.
- W3204555464 cites W2120400483 @default.
- W3204555464 cites W2122217421 @default.
- W3204555464 cites W2142993476 @default.
- W3204555464 cites W2149278843 @default.
- W3204555464 cites W2160815625 @default.
- W3204555464 cites W2161630727 @default.
- W3204555464 cites W2164099512 @default.
- W3204555464 cites W2194775991 @default.
- W3204555464 cites W2290151134 @default.
- W3204555464 cites W2311813434 @default.
- W3204555464 cites W2322987107 @default.
- W3204555464 cites W2561981131 @default.
- W3204555464 cites W2611645847 @default.
- W3204555464 cites W2615509641 @default.
- W3204555464 cites W2768073426 @default.
- W3204555464 cites W2802601181 @default.
- W3204555464 cites W28412257 @default.
- W3204555464 cites W2889600277 @default.
- W3204555464 cites W2889676902 @default.
- W3204555464 cites W2911964244 @default.
- W3204555464 cites W2941500089 @default.
- W3204555464 cites W2964216374 @default.
- W3204555464 cites W2969699559 @default.
- W3204555464 cites W2999044305 @default.
- W3204555464 cites W3024669438 @default.
- W3204555464 cites W3028529071 @default.
- W3204555464 cites W3034560014 @default.
- W3204555464 cites W3043459281 @default.
- W3204555464 cites W3048731797 @default.
- W3204555464 cites W3080157478 @default.
- W3204555464 cites W3080847572 @default.
- W3204555464 cites W3085955590 @default.
- W3204555464 cites W3096062596 @default.
- W3204555464 cites W3097803151 @default.
- W3204555464 cites W3110062799 @default.
- W3204555464 cites W639708223 @default.
- W3204555464 doi "https://doi.org/10.1007/s10586-021-03426-w" @default.
- W3204555464 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8490144" @default.
- W3204555464 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34629940" @default.
- W3204555464 hasPublicationYear "2021" @default.
- W3204555464 type Work @default.
- W3204555464 sameAs 3204555464 @default.
- W3204555464 citedByCount "12" @default.
- W3204555464 countsByYear W32045554642022 @default.
- W3204555464 countsByYear W32045554642023 @default.
- W3204555464 crossrefType "journal-article" @default.
- W3204555464 hasAuthorship W3204555464A5034175808 @default.
- W3204555464 hasAuthorship W3204555464A5059374757 @default.
- W3204555464 hasAuthorship W3204555464A5071486132 @default.
- W3204555464 hasAuthorship W3204555464A5087572406 @default.
- W3204555464 hasAuthorship W3204555464A5090118631 @default.
- W3204555464 hasBestOaLocation W32045554641 @default.
- W3204555464 hasConcept C111919701 @default.
- W3204555464 hasConcept C113863187 @default.
- W3204555464 hasConcept C119599485 @default.
- W3204555464 hasConcept C119857082 @default.
- W3204555464 hasConcept C120314980 @default.
- W3204555464 hasConcept C12267149 @default.
- W3204555464 hasConcept C124101348 @default.
- W3204555464 hasConcept C127413603 @default.
- W3204555464 hasConcept C149635348 @default.
- W3204555464 hasConcept C154945302 @default.
- W3204555464 hasConcept C169258074 @default.
- W3204555464 hasConcept C2775924081 @default.
- W3204555464 hasConcept C2776666747 @default.
- W3204555464 hasConcept C2777904410 @default.
- W3204555464 hasConcept C35525427 @default.
- W3204555464 hasConcept C40071531 @default.
- W3204555464 hasConcept C41008148 @default.
- W3204555464 hasConcept C43521106 @default.
- W3204555464 hasConcept C52001869 @default.
- W3204555464 hasConcept C79403827 @default.
- W3204555464 hasConceptScore W3204555464C111919701 @default.
- W3204555464 hasConceptScore W3204555464C113863187 @default.
- W3204555464 hasConceptScore W3204555464C119599485 @default.
- W3204555464 hasConceptScore W3204555464C119857082 @default.