Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204559080> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3204559080 abstract "System identification techniques -- projection pursuit regression models (PPRs) and convolutional neural networks (CNNs) -- provide state-of-the-art performance in predicting visual cortical neurons' responses to arbitrary input stimuli. However, the constituent kernels recovered by these methods are often noisy and lack coherent structure, making it difficult to understand the underlying component features of a neuron's receptive field. In this paper, we show that using a dictionary of diverse kernels with complex shapes learned from natural scenes based on efficient coding theory, as the front-end for PPRs and CNNs can improve their performance in neuronal response prediction as well as algorithmic data efficiency and convergence speed. Extensive experimental results also indicate that these sparse-code kernels provide important information on the component features of a neuron's receptive field. In addition, we find that models with the complex-shaped sparse code front-end are significantly better than models with a standard orientation-selective Gabor filter front-end for modeling V1 neurons that have been found to exhibit complex pattern selectivity. We show that the relative performance difference due to these two front-ends can be used to produce a sensitive metric for detecting complex selectivity in V1 neurons." @default.
- W3204559080 created "2021-10-11" @default.
- W3204559080 creator A5007833782 @default.
- W3204559080 creator A5011189540 @default.
- W3204559080 creator A5032281097 @default.
- W3204559080 creator A5060968223 @default.
- W3204559080 creator A5071020673 @default.
- W3204559080 date "2021-10-01" @default.
- W3204559080 modified "2023-10-16" @default.
- W3204559080 title "Complexity and diversity in sparse code priors improve receptive field characterization of Macaque V1 neurons" @default.
- W3204559080 cites W1492457348 @default.
- W3204559080 cites W1538131130 @default.
- W3204559080 cites W1603508051 @default.
- W3204559080 cites W1844800426 @default.
- W3204559080 cites W1860783201 @default.
- W3204559080 cites W1929281213 @default.
- W3204559080 cites W1960289438 @default.
- W3204559080 cites W1976186222 @default.
- W3204559080 cites W2001051280 @default.
- W3204559080 cites W2039360139 @default.
- W3204559080 cites W2058616551 @default.
- W3204559080 cites W2065176644 @default.
- W3204559080 cites W2069519142 @default.
- W3204559080 cites W2091886411 @default.
- W3204559080 cites W2097064168 @default.
- W3204559080 cites W2097927828 @default.
- W3204559080 cites W2101238291 @default.
- W3204559080 cites W2103212315 @default.
- W3204559080 cites W2103384342 @default.
- W3204559080 cites W2105464873 @default.
- W3204559080 cites W2108992228 @default.
- W3204559080 cites W2113207952 @default.
- W3204559080 cites W2115205382 @default.
- W3204559080 cites W2116360511 @default.
- W3204559080 cites W2117731089 @default.
- W3204559080 cites W2118103795 @default.
- W3204559080 cites W2122476423 @default.
- W3204559080 cites W2122741244 @default.
- W3204559080 cites W2128659236 @default.
- W3204559080 cites W2138584058 @default.
- W3204559080 cites W2145889472 @default.
- W3204559080 cites W2163605009 @default.
- W3204559080 cites W2169488311 @default.
- W3204559080 cites W2171525519 @default.
- W3204559080 cites W2213191115 @default.
- W3204559080 cites W2246424376 @default.
- W3204559080 cites W2264656885 @default.
- W3204559080 cites W2274405424 @default.
- W3204559080 cites W2559841149 @default.
- W3204559080 cites W2774788508 @default.
- W3204559080 cites W2900361589 @default.
- W3204559080 cites W2949449018 @default.
- W3204559080 cites W2952673047 @default.
- W3204559080 cites W2962851944 @default.
- W3204559080 cites W2963138386 @default.
- W3204559080 cites W2988313851 @default.
- W3204559080 hasPublicationYear "2021" @default.
- W3204559080 type Work @default.
- W3204559080 sameAs 3204559080 @default.
- W3204559080 citedByCount "0" @default.
- W3204559080 crossrefType "journal-article" @default.
- W3204559080 hasAuthorship W3204559080A5007833782 @default.
- W3204559080 hasAuthorship W3204559080A5011189540 @default.
- W3204559080 hasAuthorship W3204559080A5032281097 @default.
- W3204559080 hasAuthorship W3204559080A5060968223 @default.
- W3204559080 hasAuthorship W3204559080A5071020673 @default.
- W3204559080 hasBestOaLocation W32045590802 @default.
- W3204559080 hasConcept C11413529 @default.
- W3204559080 hasConcept C153180895 @default.
- W3204559080 hasConcept C154945302 @default.
- W3204559080 hasConcept C19071747 @default.
- W3204559080 hasConcept C41008148 @default.
- W3204559080 hasConcept C77637269 @default.
- W3204559080 hasConceptScore W3204559080C11413529 @default.
- W3204559080 hasConceptScore W3204559080C153180895 @default.
- W3204559080 hasConceptScore W3204559080C154945302 @default.
- W3204559080 hasConceptScore W3204559080C19071747 @default.
- W3204559080 hasConceptScore W3204559080C41008148 @default.
- W3204559080 hasConceptScore W3204559080C77637269 @default.
- W3204559080 hasLocation W32045590801 @default.
- W3204559080 hasLocation W32045590802 @default.
- W3204559080 hasOpenAccess W3204559080 @default.
- W3204559080 hasPrimaryLocation W32045590801 @default.
- W3204559080 hasRelatedWork W1992682466 @default.
- W3204559080 hasRelatedWork W2001657514 @default.
- W3204559080 hasRelatedWork W2033914206 @default.
- W3204559080 hasRelatedWork W2058670155 @default.
- W3204559080 hasRelatedWork W2080679404 @default.
- W3204559080 hasRelatedWork W2091703501 @default.
- W3204559080 hasRelatedWork W2146076056 @default.
- W3204559080 hasRelatedWork W2184870701 @default.
- W3204559080 hasRelatedWork W2612705911 @default.
- W3204559080 hasRelatedWork W2773500201 @default.
- W3204559080 isParatext "false" @default.
- W3204559080 isRetracted "false" @default.
- W3204559080 magId "3204559080" @default.
- W3204559080 workType "article" @default.