Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204561567> ?p ?o ?g. }
- W3204561567 endingPage "127344" @default.
- W3204561567 startingPage "127344" @default.
- W3204561567 abstract "Machine learning (ML) is a branch of artificial intelligence (AI) that enables the analysis of complex multivariate data. ML has significant potential in risk assessments of non-target insects for modeling the multiple factors affecting insect health, including the adverse effects of agrochemicals. Here, the potential of ML for risk assessments of glyphosate (herbicide; formulation) and imidacloprid (insecticide, neonicotinoid; formulation) on the stingless bee Melipona quadrifasciata was explored. The collective behavior of forager bees was analyzed after in vitro exposure to agrochemicals. ML algorithms were applied to identify the agrochemicals that the bees have been exposed to based on multivariate behavioral features. Changes in the in situ detection of different proteins in the midgut were also studied. Imidacloprid exposure leads to the greatest changes in behavior. The ML algorithms achieved a higher accuracy (up to 91%) in identifying agrochemical contamination. The two agrochemicals altered the detection of cells positive for different proteins, which can be detrimental to midgut physiology. This study provides a holistic assessment of the sublethal effects of glyphosate and imidacloprid on a key pollinator. The procedures used here can be applied in future studies to monitor and predict multiple environmental factors affecting insect health in the field." @default.
- W3204561567 created "2021-10-11" @default.
- W3204561567 creator A5002081245 @default.
- W3204561567 creator A5023320845 @default.
- W3204561567 creator A5027177541 @default.
- W3204561567 creator A5035310866 @default.
- W3204561567 creator A5057751410 @default.
- W3204561567 creator A5084042529 @default.
- W3204561567 date "2022-02-01" @default.
- W3204561567 modified "2023-10-16" @default.
- W3204561567 title "Toxicological assessment of agrochemicals on bees using machine learning tools" @default.
- W3204561567 cites W1494192115 @default.
- W3204561567 cites W1548290904 @default.
- W3204561567 cites W1968112233 @default.
- W3204561567 cites W1971571526 @default.
- W3204561567 cites W1989129286 @default.
- W3204561567 cites W2021236394 @default.
- W3204561567 cites W2026963422 @default.
- W3204561567 cites W2043990147 @default.
- W3204561567 cites W2061490273 @default.
- W3204561567 cites W2064832070 @default.
- W3204561567 cites W2072727225 @default.
- W3204561567 cites W2085849969 @default.
- W3204561567 cites W2093501750 @default.
- W3204561567 cites W2095799332 @default.
- W3204561567 cites W2102203250 @default.
- W3204561567 cites W2116977627 @default.
- W3204561567 cites W2119371273 @default.
- W3204561567 cites W2122141746 @default.
- W3204561567 cites W2124395110 @default.
- W3204561567 cites W2125205784 @default.
- W3204561567 cites W2127359897 @default.
- W3204561567 cites W2127543426 @default.
- W3204561567 cites W2134022155 @default.
- W3204561567 cites W2143426320 @default.
- W3204561567 cites W2154010977 @default.
- W3204561567 cites W2161625344 @default.
- W3204561567 cites W2171524370 @default.
- W3204561567 cites W2226861039 @default.
- W3204561567 cites W2325680826 @default.
- W3204561567 cites W2342249984 @default.
- W3204561567 cites W2463397540 @default.
- W3204561567 cites W2573689683 @default.
- W3204561567 cites W2765193892 @default.
- W3204561567 cites W2789426359 @default.
- W3204561567 cites W2795066059 @default.
- W3204561567 cites W2852839336 @default.
- W3204561567 cites W2879807875 @default.
- W3204561567 cites W2894939314 @default.
- W3204561567 cites W2904706554 @default.
- W3204561567 cites W2905076313 @default.
- W3204561567 cites W2905473422 @default.
- W3204561567 cites W2915857289 @default.
- W3204561567 cites W2941352015 @default.
- W3204561567 cites W2945020349 @default.
- W3204561567 cites W2952833057 @default.
- W3204561567 cites W2980633638 @default.
- W3204561567 cites W2986522465 @default.
- W3204561567 cites W2994747008 @default.
- W3204561567 cites W2999875061 @default.
- W3204561567 cites W3014385893 @default.
- W3204561567 cites W3017009119 @default.
- W3204561567 cites W3022209596 @default.
- W3204561567 cites W3032885342 @default.
- W3204561567 cites W3039289988 @default.
- W3204561567 cites W3039513522 @default.
- W3204561567 cites W3039573471 @default.
- W3204561567 cites W3040167938 @default.
- W3204561567 cites W3048770668 @default.
- W3204561567 cites W3095243493 @default.
- W3204561567 cites W3099878876 @default.
- W3204561567 cites W3116812615 @default.
- W3204561567 cites W3120530707 @default.
- W3204561567 cites W3124624305 @default.
- W3204561567 cites W3126712526 @default.
- W3204561567 cites W3150319102 @default.
- W3204561567 cites W3159967606 @default.
- W3204561567 cites W3193706593 @default.
- W3204561567 cites W4238510752 @default.
- W3204561567 cites W4294214983 @default.
- W3204561567 doi "https://doi.org/10.1016/j.jhazmat.2021.127344" @default.
- W3204561567 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34607030" @default.
- W3204561567 hasPublicationYear "2022" @default.
- W3204561567 type Work @default.
- W3204561567 sameAs 3204561567 @default.
- W3204561567 citedByCount "7" @default.
- W3204561567 countsByYear W32045615672022 @default.
- W3204561567 countsByYear W32045615672023 @default.
- W3204561567 crossrefType "journal-article" @default.
- W3204561567 hasAuthorship W3204561567A5002081245 @default.
- W3204561567 hasAuthorship W3204561567A5023320845 @default.
- W3204561567 hasAuthorship W3204561567A5027177541 @default.
- W3204561567 hasAuthorship W3204561567A5035310866 @default.
- W3204561567 hasAuthorship W3204561567A5057751410 @default.
- W3204561567 hasAuthorship W3204561567A5084042529 @default.
- W3204561567 hasConcept C118518473 @default.
- W3204561567 hasConcept C150903083 @default.
- W3204561567 hasConcept C161176658 @default.