Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204577749> ?p ?o ?g. }
- W3204577749 endingPage "15" @default.
- W3204577749 startingPage "1" @default.
- W3204577749 abstract "Due to the numerous factors that affect the air passenger traffic in the air transportation market and the randomness of various factors, in addition, the relationship between it and the air passenger traffic is very complicated, so the air passenger traffic forecast in the air transportation market has always been difficult to solve problem. This research mainly discusses the prediction model of air transportation management based on the intelligent algorithm of wireless network communication. This article uses the wireless network communication intelligent algorithm, comprehensively considers the influence of the GDP growth rate, population growth rate, total import and export volume, and other factors on the air transportation market, and draws a relatively complete forecasting model of aviation business volume. In this paper, we use an equal-weight method, linear combination model method, and Bayesian combination model method when selecting the combination forecasting method (these three methods). Because of the parallelism, robustness, nonlinearity, and other characteristics of the Bayesian network method, it adapts to the complex and highly nonlinear characteristics between air passenger traffic and its influencing factors. In the comprehensive prediction of the single model, the different information contained in the single model is used to achieve different combined prediction effects. The economic information and forecasting angle of the system can reduce systematic forecasting errors and optimize the prognostic results, which can make us more intuitively understand the difference of forecasting results brought by different combination forecasting methods. The Theil inequality coefficient of the ARIMA model is 0.004874, and the average absolute percentage error is 0.005914. This research will play a certain guiding role in the development of China’s civil aviation industry." @default.
- W3204577749 created "2021-10-11" @default.
- W3204577749 creator A5006956424 @default.
- W3204577749 creator A5014198689 @default.
- W3204577749 creator A5021228873 @default.
- W3204577749 creator A5058618418 @default.
- W3204577749 date "2021-09-28" @default.
- W3204577749 modified "2023-09-25" @default.
- W3204577749 title "Predictive Model of Air Transportation Management Based on Intelligent Algorithms of Wireless Network Communication" @default.
- W3204577749 cites W2547613975 @default.
- W3204577749 cites W2563858096 @default.
- W3204577749 cites W2565112041 @default.
- W3204577749 cites W2569229077 @default.
- W3204577749 cites W2619911107 @default.
- W3204577749 cites W2621032325 @default.
- W3204577749 cites W2727290820 @default.
- W3204577749 cites W2753689584 @default.
- W3204577749 cites W2761179785 @default.
- W3204577749 cites W2805851371 @default.
- W3204577749 cites W2810283075 @default.
- W3204577749 cites W2886213062 @default.
- W3204577749 cites W2889664916 @default.
- W3204577749 cites W2891178182 @default.
- W3204577749 cites W2892118887 @default.
- W3204577749 cites W2905361877 @default.
- W3204577749 cites W2923414303 @default.
- W3204577749 cites W2930105790 @default.
- W3204577749 cites W2938128195 @default.
- W3204577749 cites W3007938627 @default.
- W3204577749 cites W3049359342 @default.
- W3204577749 cites W3112176512 @default.
- W3204577749 cites W3112241748 @default.
- W3204577749 cites W3115266562 @default.
- W3204577749 cites W3179473991 @default.
- W3204577749 cites W4253450599 @default.
- W3204577749 doi "https://doi.org/10.1155/2021/1414539" @default.
- W3204577749 hasPublicationYear "2021" @default.
- W3204577749 type Work @default.
- W3204577749 sameAs 3204577749 @default.
- W3204577749 citedByCount "2" @default.
- W3204577749 countsByYear W32045777492022 @default.
- W3204577749 countsByYear W32045777492023 @default.
- W3204577749 crossrefType "journal-article" @default.
- W3204577749 hasAuthorship W3204577749A5006956424 @default.
- W3204577749 hasAuthorship W3204577749A5014198689 @default.
- W3204577749 hasAuthorship W3204577749A5021228873 @default.
- W3204577749 hasAuthorship W3204577749A5058618418 @default.
- W3204577749 hasBestOaLocation W32045777491 @default.
- W3204577749 hasConcept C104317684 @default.
- W3204577749 hasConcept C11413529 @default.
- W3204577749 hasConcept C119857082 @default.
- W3204577749 hasConcept C127413603 @default.
- W3204577749 hasConcept C146978453 @default.
- W3204577749 hasConcept C151406439 @default.
- W3204577749 hasConcept C166961238 @default.
- W3204577749 hasConcept C185592680 @default.
- W3204577749 hasConcept C22212356 @default.
- W3204577749 hasConcept C24338571 @default.
- W3204577749 hasConcept C41008148 @default.
- W3204577749 hasConcept C42475967 @default.
- W3204577749 hasConcept C47796450 @default.
- W3204577749 hasConcept C50644808 @default.
- W3204577749 hasConcept C55493867 @default.
- W3204577749 hasConcept C63479239 @default.
- W3204577749 hasConcept C74448152 @default.
- W3204577749 hasConceptScore W3204577749C104317684 @default.
- W3204577749 hasConceptScore W3204577749C11413529 @default.
- W3204577749 hasConceptScore W3204577749C119857082 @default.
- W3204577749 hasConceptScore W3204577749C127413603 @default.
- W3204577749 hasConceptScore W3204577749C146978453 @default.
- W3204577749 hasConceptScore W3204577749C151406439 @default.
- W3204577749 hasConceptScore W3204577749C166961238 @default.
- W3204577749 hasConceptScore W3204577749C185592680 @default.
- W3204577749 hasConceptScore W3204577749C22212356 @default.
- W3204577749 hasConceptScore W3204577749C24338571 @default.
- W3204577749 hasConceptScore W3204577749C41008148 @default.
- W3204577749 hasConceptScore W3204577749C42475967 @default.
- W3204577749 hasConceptScore W3204577749C47796450 @default.
- W3204577749 hasConceptScore W3204577749C50644808 @default.
- W3204577749 hasConceptScore W3204577749C55493867 @default.
- W3204577749 hasConceptScore W3204577749C63479239 @default.
- W3204577749 hasConceptScore W3204577749C74448152 @default.
- W3204577749 hasLocation W32045777491 @default.
- W3204577749 hasOpenAccess W3204577749 @default.
- W3204577749 hasPrimaryLocation W32045777491 @default.
- W3204577749 hasRelatedWork W189651892 @default.
- W3204577749 hasRelatedWork W1980053863 @default.
- W3204577749 hasRelatedWork W2044458478 @default.
- W3204577749 hasRelatedWork W2130341821 @default.
- W3204577749 hasRelatedWork W2144260740 @default.
- W3204577749 hasRelatedWork W2771467209 @default.
- W3204577749 hasRelatedWork W2904613341 @default.
- W3204577749 hasRelatedWork W3153649540 @default.
- W3204577749 hasRelatedWork W4295539347 @default.
- W3204577749 hasRelatedWork W220129806 @default.
- W3204577749 hasVolume "2021" @default.
- W3204577749 isParatext "false" @default.
- W3204577749 isRetracted "false" @default.