Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204580659> ?p ?o ?g. }
- W3204580659 abstract "Hypoxia is associated with abnormal cell apoptosis in trophoblast cells, which causes fetal growth restriction and related placental pathologies. Few effective methods for the prevention and treatment of placenta-related diseases exist. Natural products and functional foods have always been a rich source of potential anti-apoptotic drugs. Nobiletin (NOB), a hexamethoxyflavonoid derived from the citrus pomace, shows an anti-apoptotic activity, which is a non-toxic constituent of dietary phytochemicals approved by the Food and Drug Administration. However, their effects on hypoxia-induced human trophoblast cells have not been fully studied.The aim of this study was to investigate the protective effects of NOB on hypoxia-induced apoptosis of human trophoblast JEG-3 and BeWo cells, and their underlying mechanisms.First, the protective effect of NOB on hypoxia-induced apoptosis of JEG-3 and BeWo cells was studied. Cell viability and membrane integrity were determined by CCK-8 assay and lactate dehydrogenase activity, respectively. Real Time Quantitative PCR (RT-qPCR) and Western blot analysis were used to detect the mRNA and protein levels of HIF1α. Propidium iodide (PI)-labeled flow cytometry was used to detect cell cycle distribution. Cell apoptosis was detected by flow cytometry with Annexin V-FITC and PI double staining, and the expression of apoptosis marker protein cl-PARP was detected by Western blot analysis. Then, the molecular mechanism of NOB against apoptosis was investigated. Computer molecular docking and dynamics were used to simulate the interaction between NOB and p53 protein, and this interaction was verified in vitro by Ultraviolet and visible spectrum (UV-visible spectroscopy), fluorescence spectroscopy and circular dichroism. Furthermore, the changes in the expression of p53 signaling pathway genes and proteins were detected by RT-qPCR and Western blot analysis, respectively.Hypoxia treatment resulted in a decreased cell viability and cell membrane integrity in JEG-3 and BeWo cell lines, and an increased expression of HIF1α, cell cycle arrest in the G1 phase, and massive cell apoptosis, which were alleviated after NOB treatment. Molecular docking and dynamics simulations found that NOB spontaneously bonded to human p53 protein, leading to the change of protein conformation. The intermolecular interaction between NOB and human p53 protein was further confirmed by UV-visible spectroscopy, fluorescence spectroscopy and circular dichroism. After the treatment of 100 μM NOB, a down-regulation of mRNA and protein levels of p53 and p21 and an up-regulation of BCL2/BAX mRNA and protein ratio were observed in JEG-3 cells; however, there was also a down-regulation of mRNA and protein levels observed for p53 and p21 in BeWo cells after the treatment of NOB. The BCL2/BAX ratio of BeWo cells did not change after the treatment of 100 μM NOB.NOB attenuated hypoxia-induced apoptosis in JEG-3 and BeWo cell lines and might be a potential functional ingredient to prevent pregnancy-related diseases caused by hypoxia-induced apoptosis. These findings would also suggest the exploration and utilization of citrus resources, and the development of citrus industry." @default.
- W3204580659 created "2021-10-11" @default.
- W3204580659 creator A5001917578 @default.
- W3204580659 creator A5009570277 @default.
- W3204580659 creator A5060165452 @default.
- W3204580659 creator A5067218335 @default.
- W3204580659 creator A5074126114 @default.
- W3204580659 creator A5077522598 @default.
- W3204580659 creator A5088693287 @default.
- W3204580659 date "2021-09-24" @default.
- W3204580659 modified "2023-10-17" @default.
- W3204580659 title "Nobiletin, a hexamethoxyflavonoid from citrus pomace, attenuates G1 cell cycle arrest and apoptosis in hypoxia-induced human trophoblast cells of JEG-3 and BeWo via regulating the p53 signaling pathway" @default.
- W3204580659 cites W1580865462 @default.
- W3204580659 cites W1977548232 @default.
- W3204580659 cites W1998664010 @default.
- W3204580659 cites W2025938842 @default.
- W3204580659 cites W2046062888 @default.
- W3204580659 cites W2077200330 @default.
- W3204580659 cites W2083819829 @default.
- W3204580659 cites W2086438928 @default.
- W3204580659 cites W2093598492 @default.
- W3204580659 cites W2097784885 @default.
- W3204580659 cites W2136367437 @default.
- W3204580659 cites W2169131671 @default.
- W3204580659 cites W2178157469 @default.
- W3204580659 cites W2234995331 @default.
- W3204580659 cites W2435507289 @default.
- W3204580659 cites W2560464336 @default.
- W3204580659 cites W2580449060 @default.
- W3204580659 cites W2594892389 @default.
- W3204580659 cites W2596553151 @default.
- W3204580659 cites W2611560627 @default.
- W3204580659 cites W2736102198 @default.
- W3204580659 cites W2757407457 @default.
- W3204580659 cites W2771670745 @default.
- W3204580659 cites W2806049436 @default.
- W3204580659 cites W2885052946 @default.
- W3204580659 cites W2886167291 @default.
- W3204580659 cites W2887547555 @default.
- W3204580659 cites W2890010993 @default.
- W3204580659 cites W2900933295 @default.
- W3204580659 cites W2902017207 @default.
- W3204580659 cites W2911273615 @default.
- W3204580659 cites W2926300559 @default.
- W3204580659 cites W2945032245 @default.
- W3204580659 cites W2945307627 @default.
- W3204580659 cites W2953688982 @default.
- W3204580659 cites W2962613195 @default.
- W3204580659 cites W2963938814 @default.
- W3204580659 cites W2974673562 @default.
- W3204580659 cites W2988323443 @default.
- W3204580659 cites W2991390211 @default.
- W3204580659 cites W2995129820 @default.
- W3204580659 cites W2996828565 @default.
- W3204580659 cites W2997855104 @default.
- W3204580659 cites W3002419501 @default.
- W3204580659 cites W3002536054 @default.
- W3204580659 cites W3004777643 @default.
- W3204580659 cites W3007208266 @default.
- W3204580659 cites W3008287160 @default.
- W3204580659 cites W3009852673 @default.
- W3204580659 doi "https://doi.org/10.29219/fnr.v65.5649" @default.
- W3204580659 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8494266" @default.
- W3204580659 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34650395" @default.
- W3204580659 hasPublicationYear "2021" @default.
- W3204580659 type Work @default.
- W3204580659 sameAs 3204580659 @default.
- W3204580659 citedByCount "1" @default.
- W3204580659 countsByYear W32045806592022 @default.
- W3204580659 crossrefType "journal-article" @default.
- W3204580659 hasAuthorship W3204580659A5001917578 @default.
- W3204580659 hasAuthorship W3204580659A5009570277 @default.
- W3204580659 hasAuthorship W3204580659A5060165452 @default.
- W3204580659 hasAuthorship W3204580659A5067218335 @default.
- W3204580659 hasAuthorship W3204580659A5074126114 @default.
- W3204580659 hasAuthorship W3204580659A5077522598 @default.
- W3204580659 hasAuthorship W3204580659A5088693287 @default.
- W3204580659 hasBestOaLocation W32045806591 @default.
- W3204580659 hasConcept C104317684 @default.
- W3204580659 hasConcept C153911025 @default.
- W3204580659 hasConcept C172680121 @default.
- W3204580659 hasConcept C185592680 @default.
- W3204580659 hasConcept C190283241 @default.
- W3204580659 hasConcept C2775934118 @default.
- W3204580659 hasConcept C2776415932 @default.
- W3204580659 hasConcept C2776953305 @default.
- W3204580659 hasConcept C2777495146 @default.
- W3204580659 hasConcept C2778004101 @default.
- W3204580659 hasConcept C2778401301 @default.
- W3204580659 hasConcept C2779054382 @default.
- W3204580659 hasConcept C2779234561 @default.
- W3204580659 hasConcept C29537977 @default.
- W3204580659 hasConcept C31573885 @default.
- W3204580659 hasConcept C53227056 @default.
- W3204580659 hasConcept C54355233 @default.
- W3204580659 hasConcept C553184892 @default.
- W3204580659 hasConcept C55493867 @default.
- W3204580659 hasConcept C86803240 @default.
- W3204580659 hasConcept C88634738 @default.
- W3204580659 hasConcept C95444343 @default.