Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204580695> ?p ?o ?g. }
- W3204580695 endingPage "115946" @default.
- W3204580695 startingPage "115946" @default.
- W3204580695 abstract "The conventional Linear Discriminant Analysis (LDA) model has some challenges, such as sensitivity to the outlier, the singularity problem of the within-class scatter matrix, and Gaussian assumption of data within the same class. This paper proposes a robust LDA method that tries to solve the sensitivity to outliers and singularity problems. Specifically, we first use Bayesian risk to design the proposed method optimization problem. Then, the proposed Density-oriented LDA (DLDA) method used the data density as prior knowledge for robustness against outliers. The proposed method can classify non-linear and multi-mode distribution data sets. Furthermore, the proposed method can be employed for big data classification using the AdaBoost approach. Experimental results on synthetic and real data sets demonstrate the proposed DLDA method’s superiority over other competing methods." @default.
- W3204580695 created "2021-10-11" @default.
- W3204580695 creator A5001857859 @default.
- W3204580695 creator A5002776249 @default.
- W3204580695 creator A5019178808 @default.
- W3204580695 creator A5064885254 @default.
- W3204580695 date "2022-01-01" @default.
- W3204580695 modified "2023-09-27" @default.
- W3204580695 title "Density-oriented linear discriminant analysis" @default.
- W3204580695 cites W1603382914 @default.
- W3204580695 cites W1988790447 @default.
- W3204580695 cites W1999250675 @default.
- W3204580695 cites W2004144468 @default.
- W3204580695 cites W2008277111 @default.
- W3204580695 cites W2014596061 @default.
- W3204580695 cites W2017485198 @default.
- W3204580695 cites W2039339078 @default.
- W3204580695 cites W2088900896 @default.
- W3204580695 cites W2106792554 @default.
- W3204580695 cites W2121647436 @default.
- W3204580695 cites W2135160607 @default.
- W3204580695 cites W2151416140 @default.
- W3204580695 cites W2153635508 @default.
- W3204580695 cites W2155423555 @default.
- W3204580695 cites W2174631459 @default.
- W3204580695 cites W2394104080 @default.
- W3204580695 cites W2516176725 @default.
- W3204580695 cites W2589177632 @default.
- W3204580695 cites W2595698050 @default.
- W3204580695 cites W2703067406 @default.
- W3204580695 cites W2764012408 @default.
- W3204580695 cites W2783376202 @default.
- W3204580695 cites W2791052411 @default.
- W3204580695 cites W2793544474 @default.
- W3204580695 cites W2941129248 @default.
- W3204580695 cites W2945223572 @default.
- W3204580695 cites W2963385211 @default.
- W3204580695 cites W2966893608 @default.
- W3204580695 cites W3004545648 @default.
- W3204580695 cites W3006189731 @default.
- W3204580695 cites W3010790568 @default.
- W3204580695 cites W3095623252 @default.
- W3204580695 cites W4244952642 @default.
- W3204580695 doi "https://doi.org/10.1016/j.eswa.2021.115946" @default.
- W3204580695 hasPublicationYear "2022" @default.
- W3204580695 type Work @default.
- W3204580695 sameAs 3204580695 @default.
- W3204580695 citedByCount "1" @default.
- W3204580695 countsByYear W32045806952023 @default.
- W3204580695 crossrefType "journal-article" @default.
- W3204580695 hasAuthorship W3204580695A5001857859 @default.
- W3204580695 hasAuthorship W3204580695A5002776249 @default.
- W3204580695 hasAuthorship W3204580695A5019178808 @default.
- W3204580695 hasAuthorship W3204580695A5064885254 @default.
- W3204580695 hasConcept C104317684 @default.
- W3204580695 hasConcept C107673813 @default.
- W3204580695 hasConcept C121332964 @default.
- W3204580695 hasConcept C124101348 @default.
- W3204580695 hasConcept C127413603 @default.
- W3204580695 hasConcept C134306372 @default.
- W3204580695 hasConcept C141404830 @default.
- W3204580695 hasConcept C153180895 @default.
- W3204580695 hasConcept C154945302 @default.
- W3204580695 hasConcept C16171025 @default.
- W3204580695 hasConcept C163716315 @default.
- W3204580695 hasConcept C185592680 @default.
- W3204580695 hasConcept C21200559 @default.
- W3204580695 hasConcept C24326235 @default.
- W3204580695 hasConcept C33923547 @default.
- W3204580695 hasConcept C41008148 @default.
- W3204580695 hasConcept C55493867 @default.
- W3204580695 hasConcept C62520636 @default.
- W3204580695 hasConcept C63479239 @default.
- W3204580695 hasConcept C69738355 @default.
- W3204580695 hasConcept C79337645 @default.
- W3204580695 hasConcept C95623464 @default.
- W3204580695 hasConceptScore W3204580695C104317684 @default.
- W3204580695 hasConceptScore W3204580695C107673813 @default.
- W3204580695 hasConceptScore W3204580695C121332964 @default.
- W3204580695 hasConceptScore W3204580695C124101348 @default.
- W3204580695 hasConceptScore W3204580695C127413603 @default.
- W3204580695 hasConceptScore W3204580695C134306372 @default.
- W3204580695 hasConceptScore W3204580695C141404830 @default.
- W3204580695 hasConceptScore W3204580695C153180895 @default.
- W3204580695 hasConceptScore W3204580695C154945302 @default.
- W3204580695 hasConceptScore W3204580695C16171025 @default.
- W3204580695 hasConceptScore W3204580695C163716315 @default.
- W3204580695 hasConceptScore W3204580695C185592680 @default.
- W3204580695 hasConceptScore W3204580695C21200559 @default.
- W3204580695 hasConceptScore W3204580695C24326235 @default.
- W3204580695 hasConceptScore W3204580695C33923547 @default.
- W3204580695 hasConceptScore W3204580695C41008148 @default.
- W3204580695 hasConceptScore W3204580695C55493867 @default.
- W3204580695 hasConceptScore W3204580695C62520636 @default.
- W3204580695 hasConceptScore W3204580695C63479239 @default.
- W3204580695 hasConceptScore W3204580695C69738355 @default.
- W3204580695 hasConceptScore W3204580695C79337645 @default.
- W3204580695 hasConceptScore W3204580695C95623464 @default.