Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204583211> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3204583211 abstract "Crop weeding is the most time consuming part of agricultural production, which requires a large amount of manpower and material resources. At present, weeding operations are basically done by manual removal and manual spraying of pesticides. On the basis of this situation, an automatic weed recognition algorithm based on multi-image processing algorithm has been proposed in this paper to reduce the production cost of agricultural products and the environmental pollution caused by pesticides. Further, the algorithm of implementation steps can be presented in the following steps. First, the soil background is segmented from the image by image preprocessing. Then, the crops and weeds are classified by area threshold, template matching and saturation threshold respectively. Finally, the weights of the three image processing methods are assigned, and the precise identification and location of crops and weeds are realized by voting. In this paper, an experimental study has been carried out on soybean weeding in the field. Meanwhile, the results of the study show that the average error rate of weed identification is 18.18% and the accuracy of weed identification is 81.82%. At the same time, compared with the single method of area threshold, template matching and saturation threshold, the accuracy of weed identification based on voting weight increased by 12.83% on average. Further, the algorithm in this study can provide technical support for intelligent agricultural applications such as weeding operation by intelligent mobile robot." @default.
- W3204583211 created "2021-10-11" @default.
- W3204583211 creator A5042072171 @default.
- W3204583211 creator A5057452951 @default.
- W3204583211 creator A5059497694 @default.
- W3204583211 creator A5063598257 @default.
- W3204583211 creator A5081678740 @default.
- W3204583211 date "2021-07-26" @default.
- W3204583211 modified "2023-09-27" @default.
- W3204583211 title "Weed Detection Based on the Fusion of Multiple Image Processing Algorithms" @default.
- W3204583211 cites W2171910795 @default.
- W3204583211 cites W2439288545 @default.
- W3204583211 cites W2569479441 @default.
- W3204583211 cites W2784453654 @default.
- W3204583211 cites W2793809663 @default.
- W3204583211 cites W2971012712 @default.
- W3204583211 cites W2973126312 @default.
- W3204583211 cites W2996077526 @default.
- W3204583211 cites W2999397506 @default.
- W3204583211 cites W3012059209 @default.
- W3204583211 cites W3033272228 @default.
- W3204583211 cites W3034580072 @default.
- W3204583211 cites W3089042316 @default.
- W3204583211 cites W3096702281 @default.
- W3204583211 cites W3118111892 @default.
- W3204583211 cites W3130478942 @default.
- W3204583211 cites W2999884151 @default.
- W3204583211 doi "https://doi.org/10.23919/ccc52363.2021.9549734" @default.
- W3204583211 hasPublicationYear "2021" @default.
- W3204583211 type Work @default.
- W3204583211 sameAs 3204583211 @default.
- W3204583211 citedByCount "2" @default.
- W3204583211 countsByYear W32045832112022 @default.
- W3204583211 countsByYear W32045832112023 @default.
- W3204583211 crossrefType "proceedings-article" @default.
- W3204583211 hasAuthorship W3204583211A5042072171 @default.
- W3204583211 hasAuthorship W3204583211A5057452951 @default.
- W3204583211 hasAuthorship W3204583211A5059497694 @default.
- W3204583211 hasAuthorship W3204583211A5063598257 @default.
- W3204583211 hasAuthorship W3204583211A5081678740 @default.
- W3204583211 hasConcept C11413529 @default.
- W3204583211 hasConcept C115961682 @default.
- W3204583211 hasConcept C116834253 @default.
- W3204583211 hasConcept C154945302 @default.
- W3204583211 hasConcept C2775891814 @default.
- W3204583211 hasConcept C34736171 @default.
- W3204583211 hasConcept C41008148 @default.
- W3204583211 hasConcept C59822182 @default.
- W3204583211 hasConcept C6557445 @default.
- W3204583211 hasConcept C86803240 @default.
- W3204583211 hasConcept C9417928 @default.
- W3204583211 hasConceptScore W3204583211C11413529 @default.
- W3204583211 hasConceptScore W3204583211C115961682 @default.
- W3204583211 hasConceptScore W3204583211C116834253 @default.
- W3204583211 hasConceptScore W3204583211C154945302 @default.
- W3204583211 hasConceptScore W3204583211C2775891814 @default.
- W3204583211 hasConceptScore W3204583211C34736171 @default.
- W3204583211 hasConceptScore W3204583211C41008148 @default.
- W3204583211 hasConceptScore W3204583211C59822182 @default.
- W3204583211 hasConceptScore W3204583211C6557445 @default.
- W3204583211 hasConceptScore W3204583211C86803240 @default.
- W3204583211 hasConceptScore W3204583211C9417928 @default.
- W3204583211 hasFunder F4320337495 @default.
- W3204583211 hasLocation W32045832111 @default.
- W3204583211 hasOpenAccess W3204583211 @default.
- W3204583211 hasPrimaryLocation W32045832111 @default.
- W3204583211 hasRelatedWork W2018297885 @default.
- W3204583211 hasRelatedWork W2154809872 @default.
- W3204583211 hasRelatedWork W2382928216 @default.
- W3204583211 hasRelatedWork W2384383430 @default.
- W3204583211 hasRelatedWork W2622473642 @default.
- W3204583211 hasRelatedWork W2783233264 @default.
- W3204583211 hasRelatedWork W3107474891 @default.
- W3204583211 hasRelatedWork W4226285292 @default.
- W3204583211 hasRelatedWork W4248817909 @default.
- W3204583211 hasRelatedWork W4294691190 @default.
- W3204583211 isParatext "false" @default.
- W3204583211 isRetracted "false" @default.
- W3204583211 magId "3204583211" @default.
- W3204583211 workType "article" @default.