Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204583867> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3204583867 abstract "Indoor localization is essential for providing location based services inside homes, malls, and hospitals. Wi-Fi routers are available in almost every building and Wi-Fi chipsets are also available in almost every smartphone. Therefore, fingerprinting of Received Signal Strength Indicator (RSSI) values coming from Wi-Fi routers is a cheaper option for indoor localization. In conventional Wi-Fi fingerprinting methods, RSSI values are collected at various indoor locations and stored in a database. The device which needs localization, collects new RSSI values from its current unknown location. These values are compared with the database and the best match is returned as the current user location. Due to differences in Wi-Fi chipsets and environmental conditions, RSSI values fluctuate which makes accurate, stable, fast, and precise determination of user location difficult. If the user is inside a large multi-floor building, dataset scalability and RSSI fluctuations can make the task even more difficult. User tracking and determination of the direction in which the user is moving also becomes challenging due to hurdles and non-walkable points in the indoor environment. To solve these issues, in this paper we present a Wi-Fi fingerprinting method for large indoor environments that uses 1-D convolutional neural networks (CNN) for floor and region-status (hurdle, walkable point) classification. The procedure consists of collecting RSSI dataset which is then normalized and pre-processed. This step is essential for training the classification and localization model. The trained model can be used in real-time for fast, stable, and accurate classification of floors, region-status and user location coordinates. Based on our experiments inside a two floor university library, the proposed approach can classify the floors and region-status with an accuracy of 70.50% and 81.23% respectively, while the mean localization error is 3.47 m." @default.
- W3204583867 created "2021-10-11" @default.
- W3204583867 creator A5016027069 @default.
- W3204583867 creator A5042031658 @default.
- W3204583867 creator A5060020877 @default.
- W3204583867 date "2021-08-01" @default.
- W3204583867 modified "2023-09-24" @default.
- W3204583867 title "Accurate and Stable Wi-Fi based Indoor Localization and Classification Using Convolutional Neural Network" @default.
- W3204583867 cites W1985194829 @default.
- W3204583867 cites W2172860135 @default.
- W3204583867 cites W2520334853 @default.
- W3204583867 cites W2557998141 @default.
- W3204583867 cites W2609910680 @default.
- W3204583867 cites W2770096906 @default.
- W3204583867 cites W2805895328 @default.
- W3204583867 cites W2807038563 @default.
- W3204583867 cites W2937826820 @default.
- W3204583867 cites W2963539531 @default.
- W3204583867 cites W2967881340 @default.
- W3204583867 cites W2987546623 @default.
- W3204583867 cites W3094620144 @default.
- W3204583867 cites W4246178594 @default.
- W3204583867 doi "https://doi.org/10.1109/apwcs50173.2021.9548752" @default.
- W3204583867 hasPublicationYear "2021" @default.
- W3204583867 type Work @default.
- W3204583867 sameAs 3204583867 @default.
- W3204583867 citedByCount "1" @default.
- W3204583867 countsByYear W32045838672023 @default.
- W3204583867 crossrefType "proceedings-article" @default.
- W3204583867 hasAuthorship W3204583867A5016027069 @default.
- W3204583867 hasAuthorship W3204583867A5042031658 @default.
- W3204583867 hasAuthorship W3204583867A5060020877 @default.
- W3204583867 hasConcept C124101348 @default.
- W3204583867 hasConcept C154945302 @default.
- W3204583867 hasConcept C165005293 @default.
- W3204583867 hasConcept C2778913798 @default.
- W3204583867 hasConcept C3019020692 @default.
- W3204583867 hasConcept C31258907 @default.
- W3204583867 hasConcept C41008148 @default.
- W3204583867 hasConcept C48044578 @default.
- W3204583867 hasConcept C555944384 @default.
- W3204583867 hasConcept C73431340 @default.
- W3204583867 hasConcept C76155785 @default.
- W3204583867 hasConcept C77088390 @default.
- W3204583867 hasConcept C79403827 @default.
- W3204583867 hasConcept C81363708 @default.
- W3204583867 hasConceptScore W3204583867C124101348 @default.
- W3204583867 hasConceptScore W3204583867C154945302 @default.
- W3204583867 hasConceptScore W3204583867C165005293 @default.
- W3204583867 hasConceptScore W3204583867C2778913798 @default.
- W3204583867 hasConceptScore W3204583867C3019020692 @default.
- W3204583867 hasConceptScore W3204583867C31258907 @default.
- W3204583867 hasConceptScore W3204583867C41008148 @default.
- W3204583867 hasConceptScore W3204583867C48044578 @default.
- W3204583867 hasConceptScore W3204583867C555944384 @default.
- W3204583867 hasConceptScore W3204583867C73431340 @default.
- W3204583867 hasConceptScore W3204583867C76155785 @default.
- W3204583867 hasConceptScore W3204583867C77088390 @default.
- W3204583867 hasConceptScore W3204583867C79403827 @default.
- W3204583867 hasConceptScore W3204583867C81363708 @default.
- W3204583867 hasFunder F4320311820 @default.
- W3204583867 hasLocation W32045838671 @default.
- W3204583867 hasOpenAccess W3204583867 @default.
- W3204583867 hasPrimaryLocation W32045838671 @default.
- W3204583867 hasRelatedWork W11165844 @default.
- W3204583867 hasRelatedWork W11244355 @default.
- W3204583867 hasRelatedWork W12242549 @default.
- W3204583867 hasRelatedWork W225523 @default.
- W3204583867 hasRelatedWork W325970 @default.
- W3204583867 hasRelatedWork W3938471 @default.
- W3204583867 hasRelatedWork W3990674 @default.
- W3204583867 hasRelatedWork W4692372 @default.
- W3204583867 hasRelatedWork W6521790 @default.
- W3204583867 hasRelatedWork W9925536 @default.
- W3204583867 isParatext "false" @default.
- W3204583867 isRetracted "false" @default.
- W3204583867 magId "3204583867" @default.
- W3204583867 workType "article" @default.