Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204586475> ?p ?o ?g. }
- W3204586475 endingPage "117800" @default.
- W3204586475 startingPage "117800" @default.
- W3204586475 abstract "The ever-increasing demand for renewable energy and zero carbon dioxide emission have been the driving force for the development of thermoelectric generators with better power generation performance. Alongside with the effort to discover thermoelectric materials with higher figure-of-merit, the geometrical and structural optimisation of thermoelectric generators are also essential for maximized power generation and efficiency. This work demonstrates for the first time the application of artificial neural network, a deep learning technique, in forward modelling the maximum power generation and efficiency of a thermoelectric generator and its application in the generator design and optimisation. After training using a dataset containing 5000 3-D finite element method based simulations, the artificial neural networks with 5 layers and 400 neurons per layer demonstrate extremely high prediction accuracy over 98% and are able to operate under both constant temperature difference and heat flux conditions while taking into account of the contact electrical resistance, surface heat transfer and other thermoelectric effects. Coupling with genetic algorithm, the trained artificial neural networks can optimise the leg height, leg width, fill factor and interconnect height of the thermoelectric generator for different operating and contact resistance conditions. With almost identical optimised values obtained, our neural networks can realise geometrical optimisation within 40 s for each operating condition, which is averagely over 1,000 times faster than the optimisation performed by finite element method. The up-front computational time for the neural network can be recovered when more than 2 optimisations are needed. The successful application of this data-driven approach in this work clearly represents a new and cost-effective avenue for conducting system level design and optimisation of thermoelectric generators and other energy harvesting technologies." @default.
- W3204586475 created "2021-10-11" @default.
- W3204586475 creator A5010098389 @default.
- W3204586475 creator A5022265021 @default.
- W3204586475 creator A5024283543 @default.
- W3204586475 creator A5029821696 @default.
- W3204586475 creator A5034436938 @default.
- W3204586475 date "2022-01-01" @default.
- W3204586475 modified "2023-10-12" @default.
- W3204586475 title "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator" @default.
- W3204586475 cites W1160861270 @default.
- W3204586475 cites W1742101097 @default.
- W3204586475 cites W1965905995 @default.
- W3204586475 cites W1994262225 @default.
- W3204586475 cites W2016808037 @default.
- W3204586475 cites W2037849674 @default.
- W3204586475 cites W2053820215 @default.
- W3204586475 cites W2057156516 @default.
- W3204586475 cites W2090954954 @default.
- W3204586475 cites W2115841574 @default.
- W3204586475 cites W2118023920 @default.
- W3204586475 cites W2121112613 @default.
- W3204586475 cites W2148596493 @default.
- W3204586475 cites W2151592156 @default.
- W3204586475 cites W2161237387 @default.
- W3204586475 cites W2213664048 @default.
- W3204586475 cites W2415690642 @default.
- W3204586475 cites W2506355356 @default.
- W3204586475 cites W2564482156 @default.
- W3204586475 cites W2568037247 @default.
- W3204586475 cites W2594758347 @default.
- W3204586475 cites W2596521069 @default.
- W3204586475 cites W2624319712 @default.
- W3204586475 cites W2767183687 @default.
- W3204586475 cites W2767698201 @default.
- W3204586475 cites W2778669142 @default.
- W3204586475 cites W2793652323 @default.
- W3204586475 cites W2795806356 @default.
- W3204586475 cites W2806536390 @default.
- W3204586475 cites W2911646420 @default.
- W3204586475 cites W2912581782 @default.
- W3204586475 cites W2919623880 @default.
- W3204586475 cites W2943696859 @default.
- W3204586475 cites W2961786921 @default.
- W3204586475 cites W2968923792 @default.
- W3204586475 cites W2969580338 @default.
- W3204586475 cites W2972119632 @default.
- W3204586475 cites W2979443362 @default.
- W3204586475 cites W2982718538 @default.
- W3204586475 cites W2989226760 @default.
- W3204586475 cites W2990890324 @default.
- W3204586475 cites W2991261860 @default.
- W3204586475 cites W2994938415 @default.
- W3204586475 cites W3008967825 @default.
- W3204586475 cites W3020977316 @default.
- W3204586475 cites W3021183749 @default.
- W3204586475 cites W3021528449 @default.
- W3204586475 cites W3035078871 @default.
- W3204586475 cites W3041132940 @default.
- W3204586475 cites W3100633412 @default.
- W3204586475 cites W3128539297 @default.
- W3204586475 cites W3134144709 @default.
- W3204586475 doi "https://doi.org/10.1016/j.apenergy.2021.117800" @default.
- W3204586475 hasPublicationYear "2022" @default.
- W3204586475 type Work @default.
- W3204586475 sameAs 3204586475 @default.
- W3204586475 citedByCount "33" @default.
- W3204586475 countsByYear W32045864752021 @default.
- W3204586475 countsByYear W32045864752022 @default.
- W3204586475 countsByYear W32045864752023 @default.
- W3204586475 crossrefType "journal-article" @default.
- W3204586475 hasAuthorship W3204586475A5010098389 @default.
- W3204586475 hasAuthorship W3204586475A5022265021 @default.
- W3204586475 hasAuthorship W3204586475A5024283543 @default.
- W3204586475 hasAuthorship W3204586475A5029821696 @default.
- W3204586475 hasAuthorship W3204586475A5034436938 @default.
- W3204586475 hasConcept C117127486 @default.
- W3204586475 hasConcept C119599485 @default.
- W3204586475 hasConcept C121332964 @default.
- W3204586475 hasConcept C123671423 @default.
- W3204586475 hasConcept C127413603 @default.
- W3204586475 hasConcept C128458982 @default.
- W3204586475 hasConcept C135628077 @default.
- W3204586475 hasConcept C154945302 @default.
- W3204586475 hasConcept C159985019 @default.
- W3204586475 hasConcept C163258240 @default.
- W3204586475 hasConcept C188573790 @default.
- W3204586475 hasConcept C192562407 @default.
- W3204586475 hasConcept C207365445 @default.
- W3204586475 hasConcept C24326235 @default.
- W3204586475 hasConcept C2775924081 @default.
- W3204586475 hasConcept C2779227376 @default.
- W3204586475 hasConcept C2780992000 @default.
- W3204586475 hasConcept C41008148 @default.
- W3204586475 hasConcept C423512 @default.
- W3204586475 hasConcept C47446073 @default.
- W3204586475 hasConcept C50644808 @default.
- W3204586475 hasConcept C62520636 @default.