Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204606938> ?p ?o ?g. }
- W3204606938 endingPage "586" @default.
- W3204606938 startingPage "570" @default.
- W3204606938 abstract "This paper compares several models for forecasting regional hourly day-ahead electricity prices, while accounting for fundamental drivers. Forecasts of demand, in-feed from renewable energy sources, fossil fuel prices, and physical flows are all included in linear and nonlinear specifications, ranging in the class of ARFIMA-GARCH models—hence including parsimonious autoregressive specifications (known as expert-type models). The results support the adoption of a simple structure that is able to adapt to market conditions. Indeed, we include forecasted demand, wind and solar power, actual generation from hydro, biomass, and waste, weighted imports, and traditional fossil fuels. The inclusion of these exogenous regressors, in both the conditional mean and variance equations, outperforms in point and, especially, in density forecasting when the superior set of models is considered. Indeed, using the model confidence set and considering northern Italian prices, predictions indicate the strong predictive power of regressors, in particular in an expert model augmented for GARCH-type time-varying volatility. Finally, we find that using professional and more timely predictions of consumption and renewable energy sources improves the forecast accuracy of electricity prices more than using predictions publicly available to researchers." @default.
- W3204606938 created "2021-10-11" @default.
- W3204606938 creator A5002657304 @default.
- W3204606938 creator A5051885276 @default.
- W3204606938 creator A5061888595 @default.
- W3204606938 creator A5082693516 @default.
- W3204606938 date "2023-04-01" @default.
- W3204606938 modified "2023-10-13" @default.
- W3204606938 title "Forecasting electricity prices with expert, linear, and nonlinear models" @default.
- W3204606938 cites W1509444306 @default.
- W3204606938 cites W1568004621 @default.
- W3204606938 cites W1579890740 @default.
- W3204606938 cites W1588163064 @default.
- W3204606938 cites W1868175309 @default.
- W3204606938 cites W1966065781 @default.
- W3204606938 cites W1975994995 @default.
- W3204606938 cites W1992333903 @default.
- W3204606938 cites W1999814123 @default.
- W3204606938 cites W2000162856 @default.
- W3204606938 cites W2005136695 @default.
- W3204606938 cites W2013109882 @default.
- W3204606938 cites W2019192363 @default.
- W3204606938 cites W2024155197 @default.
- W3204606938 cites W2032542768 @default.
- W3204606938 cites W2032809563 @default.
- W3204606938 cites W2034269318 @default.
- W3204606938 cites W2038210983 @default.
- W3204606938 cites W2056641273 @default.
- W3204606938 cites W2064827017 @default.
- W3204606938 cites W2065089656 @default.
- W3204606938 cites W2078409719 @default.
- W3204606938 cites W2084308575 @default.
- W3204606938 cites W2089217930 @default.
- W3204606938 cites W2090457102 @default.
- W3204606938 cites W2113427226 @default.
- W3204606938 cites W2117922789 @default.
- W3204606938 cites W2125536334 @default.
- W3204606938 cites W2139292381 @default.
- W3204606938 cites W2139882890 @default.
- W3204606938 cites W2145777288 @default.
- W3204606938 cites W2155482907 @default.
- W3204606938 cites W2229320441 @default.
- W3204606938 cites W2272544568 @default.
- W3204606938 cites W2511021861 @default.
- W3204606938 cites W2554141034 @default.
- W3204606938 cites W2625224297 @default.
- W3204606938 cites W2761113520 @default.
- W3204606938 cites W2784307286 @default.
- W3204606938 cites W2791331167 @default.
- W3204606938 cites W2801465633 @default.
- W3204606938 cites W2883003251 @default.
- W3204606938 cites W2895198391 @default.
- W3204606938 cites W2901349443 @default.
- W3204606938 cites W2902930959 @default.
- W3204606938 cites W2921860615 @default.
- W3204606938 cites W2951646561 @default.
- W3204606938 cites W2996870803 @default.
- W3204606938 cites W3004821753 @default.
- W3204606938 cites W3008738711 @default.
- W3204606938 cites W3024158773 @default.
- W3204606938 cites W3043337086 @default.
- W3204606938 cites W3049016583 @default.
- W3204606938 cites W3107228032 @default.
- W3204606938 cites W3121154541 @default.
- W3204606938 cites W3121902344 @default.
- W3204606938 cites W3122351404 @default.
- W3204606938 cites W3124738382 @default.
- W3204606938 cites W3126081667 @default.
- W3204606938 cites W2946376970 @default.
- W3204606938 doi "https://doi.org/10.1016/j.ijforecast.2022.01.003" @default.
- W3204606938 hasPublicationYear "2023" @default.
- W3204606938 type Work @default.
- W3204606938 sameAs 3204606938 @default.
- W3204606938 citedByCount "6" @default.
- W3204606938 countsByYear W32046069382022 @default.
- W3204606938 countsByYear W32046069382023 @default.
- W3204606938 crossrefType "journal-article" @default.
- W3204606938 hasAuthorship W3204606938A5002657304 @default.
- W3204606938 hasAuthorship W3204606938A5051885276 @default.
- W3204606938 hasAuthorship W3204606938A5061888595 @default.
- W3204606938 hasAuthorship W3204606938A5082693516 @default.
- W3204606938 hasConcept C101104100 @default.
- W3204606938 hasConcept C119599485 @default.
- W3204606938 hasConcept C121332964 @default.
- W3204606938 hasConcept C127413603 @default.
- W3204606938 hasConcept C146733006 @default.
- W3204606938 hasConcept C149782125 @default.
- W3204606938 hasConcept C159877910 @default.
- W3204606938 hasConcept C162324750 @default.
- W3204606938 hasConcept C163258240 @default.
- W3204606938 hasConcept C188573790 @default.
- W3204606938 hasConcept C206658404 @default.
- W3204606938 hasConcept C23922673 @default.
- W3204606938 hasConcept C2781104810 @default.
- W3204606938 hasConcept C41008148 @default.
- W3204606938 hasConcept C423512 @default.
- W3204606938 hasConcept C62520636 @default.
- W3204606938 hasConcept C91602232 @default.