Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204609265> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3204609265 endingPage "223" @default.
- W3204609265 startingPage "213" @default.
- W3204609265 abstract "Image registration plays an important role in medical image analysis. Conventional optimization based methods provide an accurate estimation due to the iterative process at the cost of expensive computation. Deep learning methods such as learn-to-map are much faster but either iterative or coarse-to-fine approach is required to improve accuracy for handling large motions. In this work, we proposed to learn a registration optimizer via a multi-scale neural ODE model. The inference consists of iterative gradient updates similar to a conventional gradient descent optimizer but in a much faster way, because the neural ODE learns from the training data to adapt the gradient efficiently at each iteration. Furthermore, we proposed to learn a modal-independent similarity metric to address image appearance variations across different image contrasts. We performed evaluations through extensive experiments in the context of multi-contrast 3D MR images from both public and private data sources and demonstrate the superior performance of our proposed methods." @default.
- W3204609265 created "2021-10-11" @default.
- W3204609265 creator A5031435084 @default.
- W3204609265 creator A5038526207 @default.
- W3204609265 creator A5084882870 @default.
- W3204609265 creator A5087112236 @default.
- W3204609265 creator A5087677948 @default.
- W3204609265 date "2021-01-01" @default.
- W3204609265 modified "2023-09-30" @default.
- W3204609265 title "Multi-scale Neural ODEs for 3D Medical Image Registration" @default.
- W3204609265 cites W1641498739 @default.
- W3204609265 cites W1849207675 @default.
- W3204609265 cites W1901129140 @default.
- W3204609265 cites W1970928383 @default.
- W3204609265 cites W1983592655 @default.
- W3204609265 cites W1987869189 @default.
- W3204609265 cites W2034432063 @default.
- W3204609265 cites W2080433710 @default.
- W3204609265 cites W2170167891 @default.
- W3204609265 cites W2604920239 @default.
- W3204609265 cites W2606589537 @default.
- W3204609265 cites W2608822622 @default.
- W3204609265 cites W2613483135 @default.
- W3204609265 cites W2752246523 @default.
- W3204609265 cites W2752460469 @default.
- W3204609265 cites W2752785527 @default.
- W3204609265 cites W2753461941 @default.
- W3204609265 cites W2891590469 @default.
- W3204609265 cites W2923212559 @default.
- W3204609265 cites W2947835554 @default.
- W3204609265 cites W2952056941 @default.
- W3204609265 cites W2963720324 @default.
- W3204609265 cites W2963890275 @default.
- W3204609265 cites W2966108228 @default.
- W3204609265 cites W3035166033 @default.
- W3204609265 cites W3092324452 @default.
- W3204609265 cites W3093367452 @default.
- W3204609265 cites W3104164805 @default.
- W3204609265 doi "https://doi.org/10.1007/978-3-030-87202-1_21" @default.
- W3204609265 hasPublicationYear "2021" @default.
- W3204609265 type Work @default.
- W3204609265 sameAs 3204609265 @default.
- W3204609265 citedByCount "5" @default.
- W3204609265 countsByYear W32046092652022 @default.
- W3204609265 countsByYear W32046092652023 @default.
- W3204609265 crossrefType "book-chapter" @default.
- W3204609265 hasAuthorship W3204609265A5031435084 @default.
- W3204609265 hasAuthorship W3204609265A5038526207 @default.
- W3204609265 hasAuthorship W3204609265A5084882870 @default.
- W3204609265 hasAuthorship W3204609265A5087112236 @default.
- W3204609265 hasAuthorship W3204609265A5087677948 @default.
- W3204609265 hasBestOaLocation W32046092652 @default.
- W3204609265 hasConcept C115961682 @default.
- W3204609265 hasConcept C121684516 @default.
- W3204609265 hasConcept C154945302 @default.
- W3204609265 hasConcept C166704113 @default.
- W3204609265 hasConcept C205649164 @default.
- W3204609265 hasConcept C2778755073 @default.
- W3204609265 hasConcept C31972630 @default.
- W3204609265 hasConcept C41008148 @default.
- W3204609265 hasConcept C58640448 @default.
- W3204609265 hasConceptScore W3204609265C115961682 @default.
- W3204609265 hasConceptScore W3204609265C121684516 @default.
- W3204609265 hasConceptScore W3204609265C154945302 @default.
- W3204609265 hasConceptScore W3204609265C166704113 @default.
- W3204609265 hasConceptScore W3204609265C205649164 @default.
- W3204609265 hasConceptScore W3204609265C2778755073 @default.
- W3204609265 hasConceptScore W3204609265C31972630 @default.
- W3204609265 hasConceptScore W3204609265C41008148 @default.
- W3204609265 hasConceptScore W3204609265C58640448 @default.
- W3204609265 hasLocation W32046092651 @default.
- W3204609265 hasLocation W32046092652 @default.
- W3204609265 hasOpenAccess W3204609265 @default.
- W3204609265 hasPrimaryLocation W32046092651 @default.
- W3204609265 hasRelatedWork W17938315 @default.
- W3204609265 hasRelatedWork W2009466720 @default.
- W3204609265 hasRelatedWork W2011443206 @default.
- W3204609265 hasRelatedWork W2041698670 @default.
- W3204609265 hasRelatedWork W2114100766 @default.
- W3204609265 hasRelatedWork W2125070361 @default.
- W3204609265 hasRelatedWork W2392187754 @default.
- W3204609265 hasRelatedWork W2469330841 @default.
- W3204609265 hasRelatedWork W2995419473 @default.
- W3204609265 hasRelatedWork W3163375306 @default.
- W3204609265 isParatext "false" @default.
- W3204609265 isRetracted "false" @default.
- W3204609265 magId "3204609265" @default.
- W3204609265 workType "book-chapter" @default.