Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204646918> ?p ?o ?g. }
- W3204646918 abstract "Gastric cancer (GC) is the fifth most common cancer in the world and a serious threat to human health. Due to its high morbidity and mortality, a simple, rapid and accurate early screening method for GC is urgently needed. In this study, the potential of Raman spectroscopy combined with different machine learning methods was explored to distinguish serum samples from GC patients and healthy controls. Serum Raman spectra were collected from 109 patients with GC (including 35 in stage I, 14 in stage II, 35 in stage III, and 25 in stage IV) and 104 healthy volunteers matched for age, presenting for a routine physical examination. We analyzed the difference in serum metabolism between GC patients and healthy people through a comparative study of the average Raman spectra of the two groups. Four machine learning methods, one-dimensional convolutional neural network, random forest, support vector machine, and K-nearest neighbor were used to explore identifying two sets of Raman spectral data. The classification model was established by using 70% of the data as a training set and 30% as a test set. Using unseen data to test the model, the RF model yielded an accuracy of 92.8%, and the sensitivity and specificity were 94.7% and 90.8%. The performance of the RF model was further confirmed by the receiver operating characteristic (ROC) curve, with an area under the curve (AUC) of 0.9199. This exploratory work shows that serum Raman spectroscopy combined with RF has great potential in the machine-assisted classification of GC, and is expected to provide a non-destructive and convenient technology for the screening of GC patients." @default.
- W3204646918 created "2021-10-11" @default.
- W3204646918 creator A5000993677 @default.
- W3204646918 creator A5005099065 @default.
- W3204646918 creator A5007757773 @default.
- W3204646918 creator A5020387774 @default.
- W3204646918 creator A5022802322 @default.
- W3204646918 creator A5027634182 @default.
- W3204646918 creator A5039697493 @default.
- W3204646918 creator A5040905727 @default.
- W3204646918 creator A5069991040 @default.
- W3204646918 creator A5079697169 @default.
- W3204646918 date "2021-09-27" @default.
- W3204646918 modified "2023-09-24" @default.
- W3204646918 title "A Novel and Rapid Serum Detection Technology for Non-Invasive Screening of Gastric Cancer Based on Raman Spectroscopy Combined With Different Machine Learning Methods" @default.
- W3204646918 cites W1757407923 @default.
- W3204646918 cites W1968871412 @default.
- W3204646918 cites W2012509886 @default.
- W3204646918 cites W2012716735 @default.
- W3204646918 cites W2072007814 @default.
- W3204646918 cites W2083346306 @default.
- W3204646918 cites W2095725724 @default.
- W3204646918 cites W2098634475 @default.
- W3204646918 cites W2128574255 @default.
- W3204646918 cites W214733813 @default.
- W3204646918 cites W2169961966 @default.
- W3204646918 cites W2611336647 @default.
- W3204646918 cites W2778455075 @default.
- W3204646918 cites W2884144004 @default.
- W3204646918 cites W2887657676 @default.
- W3204646918 cites W2889646458 @default.
- W3204646918 cites W2911964244 @default.
- W3204646918 cites W2916758498 @default.
- W3204646918 cites W2984935433 @default.
- W3204646918 cites W2998401461 @default.
- W3204646918 cites W3016250173 @default.
- W3204646918 cites W3037882010 @default.
- W3204646918 cites W3048657004 @default.
- W3204646918 cites W3155009851 @default.
- W3204646918 cites W4238768614 @default.
- W3204646918 doi "https://doi.org/10.3389/fonc.2021.665176" @default.
- W3204646918 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8504718" @default.
- W3204646918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34646758" @default.
- W3204646918 hasPublicationYear "2021" @default.
- W3204646918 type Work @default.
- W3204646918 sameAs 3204646918 @default.
- W3204646918 citedByCount "6" @default.
- W3204646918 countsByYear W32046469182022 @default.
- W3204646918 countsByYear W32046469182023 @default.
- W3204646918 crossrefType "journal-article" @default.
- W3204646918 hasAuthorship W3204646918A5000993677 @default.
- W3204646918 hasAuthorship W3204646918A5005099065 @default.
- W3204646918 hasAuthorship W3204646918A5007757773 @default.
- W3204646918 hasAuthorship W3204646918A5020387774 @default.
- W3204646918 hasAuthorship W3204646918A5022802322 @default.
- W3204646918 hasAuthorship W3204646918A5027634182 @default.
- W3204646918 hasAuthorship W3204646918A5039697493 @default.
- W3204646918 hasAuthorship W3204646918A5040905727 @default.
- W3204646918 hasAuthorship W3204646918A5069991040 @default.
- W3204646918 hasAuthorship W3204646918A5079697169 @default.
- W3204646918 hasBestOaLocation W32046469181 @default.
- W3204646918 hasConcept C119857082 @default.
- W3204646918 hasConcept C120665830 @default.
- W3204646918 hasConcept C121332964 @default.
- W3204646918 hasConcept C121608353 @default.
- W3204646918 hasConcept C12267149 @default.
- W3204646918 hasConcept C126322002 @default.
- W3204646918 hasConcept C146357865 @default.
- W3204646918 hasConcept C151730666 @default.
- W3204646918 hasConcept C153180895 @default.
- W3204646918 hasConcept C154945302 @default.
- W3204646918 hasConcept C169258074 @default.
- W3204646918 hasConcept C169903167 @default.
- W3204646918 hasConcept C40003534 @default.
- W3204646918 hasConcept C41008148 @default.
- W3204646918 hasConcept C50644808 @default.
- W3204646918 hasConcept C58471807 @default.
- W3204646918 hasConcept C71924100 @default.
- W3204646918 hasConcept C81363708 @default.
- W3204646918 hasConcept C86803240 @default.
- W3204646918 hasConceptScore W3204646918C119857082 @default.
- W3204646918 hasConceptScore W3204646918C120665830 @default.
- W3204646918 hasConceptScore W3204646918C121332964 @default.
- W3204646918 hasConceptScore W3204646918C121608353 @default.
- W3204646918 hasConceptScore W3204646918C12267149 @default.
- W3204646918 hasConceptScore W3204646918C126322002 @default.
- W3204646918 hasConceptScore W3204646918C146357865 @default.
- W3204646918 hasConceptScore W3204646918C151730666 @default.
- W3204646918 hasConceptScore W3204646918C153180895 @default.
- W3204646918 hasConceptScore W3204646918C154945302 @default.
- W3204646918 hasConceptScore W3204646918C169258074 @default.
- W3204646918 hasConceptScore W3204646918C169903167 @default.
- W3204646918 hasConceptScore W3204646918C40003534 @default.
- W3204646918 hasConceptScore W3204646918C41008148 @default.
- W3204646918 hasConceptScore W3204646918C50644808 @default.
- W3204646918 hasConceptScore W3204646918C58471807 @default.
- W3204646918 hasConceptScore W3204646918C71924100 @default.
- W3204646918 hasConceptScore W3204646918C81363708 @default.
- W3204646918 hasConceptScore W3204646918C86803240 @default.
- W3204646918 hasLocation W32046469181 @default.