Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204651753> ?p ?o ?g. }
- W3204651753 endingPage "204130" @default.
- W3204651753 startingPage "204130" @default.
- W3204651753 abstract "Micropitting is a type of surface fatigue damage that occurs in rolling-sliding contacts operating under thin oil film conditions. It is caused by stress fluctuations, brought about by surface asperity interactions, which lead to initiation and propagation of numerous surface fatigue cracks and subsequent loss of material. Despite its increasing importance to gear and bearing reliability, the mechanisms of micropitting are poorly understood. This is particularly the case concerning the effects of friction on micropitting which are difficult to study under controlled conditions. This is because it is difficult to isolate the friction effects from other influential factors, in particular from the build-up of any anti-wear tribofilm and its subsequent effect on the running-in of counterface roughness that is known to strongly affect micropitting through its influence on severity of asperity stresses. This paper presents new data on the impact of friction on micropitting obtained using a new test methodology. Micropitting tests were conducted using a ball-on-disc MTM rig with the additional functionality to continuously monitor the growth of tribofilm during the test. Friction was varied by using custom-made oils containing different concentrations of MoDTC. Crucially, the effect of friction was isolated from the effect of counterface roughness running-in by introducing the MoDTC blend only after the running-in period was completed with a ZDDP solution alone. This approach eliminates the influence of MoDTC on ZDDP anti-wear tribofilm growth in early stages and hence ensures the same running-in takes place in each test. This gives similar asperity pressure history, regardless of the amount of MoDTC present. Results show that friction has a very significant impact on micropitting; for example, the extent of micropitting was reduced by a factor of 10 when friction coefficient was reduced from about 0.1 to 0.04. Lower friction results in fewer surface cracks which grow at a shallower angle to the surface than those at higher friction. Numerical analysis of contact stresses present under tested conditions indicates that the primary mechanism by which friction affects micropitting is through its effects on near surface stress fields: reducing friction reduces the local tensile and shear stresses in the near surface, asperity-influenced region, which may in turn be expected to mitigate crack initiation and propagation. The results presented may help in designing oil formulations that can extend component lifetimes with respect to both wear and micropitting damage through controlling tribofilm growth and friction." @default.
- W3204651753 created "2021-10-11" @default.
- W3204651753 creator A5027115543 @default.
- W3204651753 creator A5050900071 @default.
- W3204651753 creator A5073665908 @default.
- W3204651753 creator A5084279085 @default.
- W3204651753 date "2022-01-01" @default.
- W3204651753 modified "2023-10-14" @default.
- W3204651753 title "The effect of friction on micropitting" @default.
- W3204651753 cites W189018649 @default.
- W3204651753 cites W1964714637 @default.
- W3204651753 cites W1969337707 @default.
- W3204651753 cites W1970670281 @default.
- W3204651753 cites W1971634919 @default.
- W3204651753 cites W1974297288 @default.
- W3204651753 cites W1992644092 @default.
- W3204651753 cites W1993843958 @default.
- W3204651753 cites W1994376615 @default.
- W3204651753 cites W1998496071 @default.
- W3204651753 cites W2000098542 @default.
- W3204651753 cites W2001295344 @default.
- W3204651753 cites W2006202568 @default.
- W3204651753 cites W2009914840 @default.
- W3204651753 cites W2010050258 @default.
- W3204651753 cites W2026095139 @default.
- W3204651753 cites W2037850053 @default.
- W3204651753 cites W2038258206 @default.
- W3204651753 cites W2045410254 @default.
- W3204651753 cites W2050720224 @default.
- W3204651753 cites W2054634795 @default.
- W3204651753 cites W2055057689 @default.
- W3204651753 cites W2056688929 @default.
- W3204651753 cites W2058566293 @default.
- W3204651753 cites W2063294548 @default.
- W3204651753 cites W2066658291 @default.
- W3204651753 cites W2067077532 @default.
- W3204651753 cites W2071103481 @default.
- W3204651753 cites W2072782489 @default.
- W3204651753 cites W2073188441 @default.
- W3204651753 cites W2073818315 @default.
- W3204651753 cites W2074148881 @default.
- W3204651753 cites W2079412619 @default.
- W3204651753 cites W2080051473 @default.
- W3204651753 cites W2081190285 @default.
- W3204651753 cites W2087536102 @default.
- W3204651753 cites W2088358975 @default.
- W3204651753 cites W2089053378 @default.
- W3204651753 cites W2466320182 @default.
- W3204651753 cites W2500940821 @default.
- W3204651753 cites W2549201200 @default.
- W3204651753 cites W2558977356 @default.
- W3204651753 cites W2560737490 @default.
- W3204651753 cites W2599284796 @default.
- W3204651753 cites W2602196285 @default.
- W3204651753 cites W2770266507 @default.
- W3204651753 cites W2944113197 @default.
- W3204651753 cites W2946931557 @default.
- W3204651753 cites W2949480635 @default.
- W3204651753 cites W2998747964 @default.
- W3204651753 cites W3133788145 @default.
- W3204651753 cites W3137663597 @default.
- W3204651753 cites W3167555753 @default.
- W3204651753 doi "https://doi.org/10.1016/j.wear.2021.204130" @default.
- W3204651753 hasPublicationYear "2022" @default.
- W3204651753 type Work @default.
- W3204651753 sameAs 3204651753 @default.
- W3204651753 citedByCount "2" @default.
- W3204651753 countsByYear W32046517532022 @default.
- W3204651753 crossrefType "journal-article" @default.
- W3204651753 hasAuthorship W3204651753A5027115543 @default.
- W3204651753 hasAuthorship W3204651753A5050900071 @default.
- W3204651753 hasAuthorship W3204651753A5073665908 @default.
- W3204651753 hasAuthorship W3204651753A5084279085 @default.
- W3204651753 hasBestOaLocation W32046517531 @default.
- W3204651753 hasConcept C107365816 @default.
- W3204651753 hasConcept C127413603 @default.
- W3204651753 hasConcept C154945302 @default.
- W3204651753 hasConcept C159985019 @default.
- W3204651753 hasConcept C191897082 @default.
- W3204651753 hasConcept C192562407 @default.
- W3204651753 hasConcept C199978012 @default.
- W3204651753 hasConcept C2779778606 @default.
- W3204651753 hasConcept C2987647002 @default.
- W3204651753 hasConcept C41008148 @default.
- W3204651753 hasConcept C71039073 @default.
- W3204651753 hasConcept C77595967 @default.
- W3204651753 hasConceptScore W3204651753C107365816 @default.
- W3204651753 hasConceptScore W3204651753C127413603 @default.
- W3204651753 hasConceptScore W3204651753C154945302 @default.
- W3204651753 hasConceptScore W3204651753C159985019 @default.
- W3204651753 hasConceptScore W3204651753C191897082 @default.
- W3204651753 hasConceptScore W3204651753C192562407 @default.
- W3204651753 hasConceptScore W3204651753C199978012 @default.
- W3204651753 hasConceptScore W3204651753C2779778606 @default.
- W3204651753 hasConceptScore W3204651753C2987647002 @default.
- W3204651753 hasConceptScore W3204651753C41008148 @default.
- W3204651753 hasConceptScore W3204651753C71039073 @default.
- W3204651753 hasConceptScore W3204651753C77595967 @default.