Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204652326> ?p ?o ?g. }
- W3204652326 endingPage "132617" @default.
- W3204652326 startingPage "132617" @default.
- W3204652326 abstract "• A novel OPCA-MBN method is proposed for chemical process monitoring and variable state prediction. • Principal component analysis is optimized in terms of its robustness and effectiveness. • Multi-state Bayesian network is first proposed for fault diagnosis. • The causal relationships between tangled internal variables are resolved by Transfer entropy. • Kernel density estimation is applied to represent five states of process variables. Considering the weaknesses of traditional principal component analysis (PCA) in dealing with nonlinear correlations and non-Gaussian distribution data, PCA is optimized by replacing covariance matrix with Spearman ranking correlation coefficient (SRCC) matrix and introducing Gaussian transition by Johnson transformation. Because the commonly used BN that simply identifies a node as faulty or normal states sometimes fails to diagnose critical operation information, multi-state Bayesian network (MBN) is developed to recognize a node into multiple states. To fulfill process monitoring task, the optimized PCA (OPCA) and MBN integrated method (OPCA-MBN) is proposed in this paper. OPCA is utilized to detect faults and provide evidence to MBN for diagnosing fault or normal oscillation propagation pathways. In the modeling process of MBN, the causal relationships between tangled internal variables are determined using Transfer entropy and process knowledge. The practicability and effectiveness of the proposed method are demonstrated through the application in the Tennessee Eastman (TE) process in comparison with two-state BN." @default.
- W3204652326 created "2021-10-11" @default.
- W3204652326 creator A5030967805 @default.
- W3204652326 creator A5048806339 @default.
- W3204652326 creator A5049344955 @default.
- W3204652326 creator A5072032880 @default.
- W3204652326 creator A5074128343 @default.
- W3204652326 date "2022-02-01" @default.
- W3204652326 modified "2023-09-27" @default.
- W3204652326 title "Optimized principal component analysis and multi-state Bayesian network integrated method for chemical process monitoring and variable state prediction" @default.
- W3204652326 cites W134671698 @default.
- W3204652326 cites W1992861063 @default.
- W3204652326 cites W1993694278 @default.
- W3204652326 cites W2003565038 @default.
- W3204652326 cites W2004186751 @default.
- W3204652326 cites W2007864746 @default.
- W3204652326 cites W2041782669 @default.
- W3204652326 cites W2044077463 @default.
- W3204652326 cites W2073982870 @default.
- W3204652326 cites W2131843647 @default.
- W3204652326 cites W2132029223 @default.
- W3204652326 cites W2135663228 @default.
- W3204652326 cites W2278400335 @default.
- W3204652326 cites W2514514622 @default.
- W3204652326 cites W2520169384 @default.
- W3204652326 cites W2582860853 @default.
- W3204652326 cites W2584027124 @default.
- W3204652326 cites W2594878042 @default.
- W3204652326 cites W2772641899 @default.
- W3204652326 cites W2773243985 @default.
- W3204652326 cites W2804880936 @default.
- W3204652326 cites W2822775433 @default.
- W3204652326 cites W2896266079 @default.
- W3204652326 cites W2915656323 @default.
- W3204652326 cites W2918634517 @default.
- W3204652326 cites W2945806310 @default.
- W3204652326 cites W2955282559 @default.
- W3204652326 cites W2998115392 @default.
- W3204652326 cites W3001562928 @default.
- W3204652326 cites W3001599259 @default.
- W3204652326 cites W3020432805 @default.
- W3204652326 cites W3026829142 @default.
- W3204652326 cites W3091068909 @default.
- W3204652326 doi "https://doi.org/10.1016/j.cej.2021.132617" @default.
- W3204652326 hasPublicationYear "2022" @default.
- W3204652326 type Work @default.
- W3204652326 sameAs 3204652326 @default.
- W3204652326 citedByCount "4" @default.
- W3204652326 countsByYear W32046523262022 @default.
- W3204652326 countsByYear W32046523262023 @default.
- W3204652326 crossrefType "journal-article" @default.
- W3204652326 hasAuthorship W3204652326A5030967805 @default.
- W3204652326 hasAuthorship W3204652326A5048806339 @default.
- W3204652326 hasAuthorship W3204652326A5049344955 @default.
- W3204652326 hasAuthorship W3204652326A5072032880 @default.
- W3204652326 hasAuthorship W3204652326A5074128343 @default.
- W3204652326 hasConcept C104317684 @default.
- W3204652326 hasConcept C106301342 @default.
- W3204652326 hasConcept C121332964 @default.
- W3204652326 hasConcept C122280245 @default.
- W3204652326 hasConcept C12267149 @default.
- W3204652326 hasConcept C124101348 @default.
- W3204652326 hasConcept C147597530 @default.
- W3204652326 hasConcept C153180895 @default.
- W3204652326 hasConcept C154945302 @default.
- W3204652326 hasConcept C163716315 @default.
- W3204652326 hasConcept C182049051 @default.
- W3204652326 hasConcept C182335926 @default.
- W3204652326 hasConcept C185592680 @default.
- W3204652326 hasConcept C27438332 @default.
- W3204652326 hasConcept C33724603 @default.
- W3204652326 hasConcept C41008148 @default.
- W3204652326 hasConcept C55493867 @default.
- W3204652326 hasConcept C61326573 @default.
- W3204652326 hasConcept C62520636 @default.
- W3204652326 hasConcept C63479239 @default.
- W3204652326 hasConcept C9679016 @default.
- W3204652326 hasConceptScore W3204652326C104317684 @default.
- W3204652326 hasConceptScore W3204652326C106301342 @default.
- W3204652326 hasConceptScore W3204652326C121332964 @default.
- W3204652326 hasConceptScore W3204652326C122280245 @default.
- W3204652326 hasConceptScore W3204652326C12267149 @default.
- W3204652326 hasConceptScore W3204652326C124101348 @default.
- W3204652326 hasConceptScore W3204652326C147597530 @default.
- W3204652326 hasConceptScore W3204652326C153180895 @default.
- W3204652326 hasConceptScore W3204652326C154945302 @default.
- W3204652326 hasConceptScore W3204652326C163716315 @default.
- W3204652326 hasConceptScore W3204652326C182049051 @default.
- W3204652326 hasConceptScore W3204652326C182335926 @default.
- W3204652326 hasConceptScore W3204652326C185592680 @default.
- W3204652326 hasConceptScore W3204652326C27438332 @default.
- W3204652326 hasConceptScore W3204652326C33724603 @default.
- W3204652326 hasConceptScore W3204652326C41008148 @default.
- W3204652326 hasConceptScore W3204652326C55493867 @default.
- W3204652326 hasConceptScore W3204652326C61326573 @default.
- W3204652326 hasConceptScore W3204652326C62520636 @default.
- W3204652326 hasConceptScore W3204652326C63479239 @default.
- W3204652326 hasConceptScore W3204652326C9679016 @default.