Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204652402> ?p ?o ?g. }
- W3204652402 abstract "While earlier research in human-robot interaction pre-dominantly uses rule-based architectures for natural language interaction, these approaches are not flexible enough for long-term interactions in the real world due to the large variation in user utterances. In contrast, data-driven approaches map the user input to the agent output directly, hence, provide more flexibility with these variations without requiring any set of rules. However, data-driven approaches are generally applied to single dialogue exchanges with a user and do not build up a memory over long-term conversation with different users, whereas long-term interactions require remembering users and their preferences incrementally and continuously and recalling previous interactions with users to adapt and personalise the interactions, known as the lifelong learning problem. In addition, it is desirable to learn user preferences from a few samples of interactions (i.e., few-shot learning). These are known to be challenging problems in machine learning, while they are trivial for rule-based approaches, creating a trade-off between flexibility and robustness. Correspondingly, in this work, we present the text-based Barista Datasets generated to evaluate the potential of data-driven approaches in generic and personalised long-term human-robot interactions with simulated real-world problems, such as recognition errors, incorrect recalls and changes to the user preferences. Based on these datasets, we explore the performance and the underlying inaccuracies of the state-of-the-art data-driven dialogue models that are strong baselines in other domains of personalisation in single interactions, namely Supervised Embeddings, Sequence-to-Sequence, End-to-End Memory Network, Key-Value Memory Network, and Generative Profile Memory Network. The experiments show that while data-driven approaches are suitable for generic task-oriented dialogue and real-time interactions, no model performs sufficiently well to be deployed in personalised long-term interactions in the real world, because of their inability to learn and use new identities, and their poor performance in recalling user-related data." @default.
- W3204652402 created "2021-10-11" @default.
- W3204652402 creator A5035627933 @default.
- W3204652402 creator A5089869999 @default.
- W3204652402 creator A5091756638 @default.
- W3204652402 date "2021-09-28" @default.
- W3204652402 modified "2023-09-24" @default.
- W3204652402 title "Coffee With a Hint of Data: Towards Using Data-Driven Approaches in Personalised Long-Term Interactions" @default.
- W3204652402 cites W1510181582 @default.
- W3204652402 cites W1985945240 @default.
- W3204652402 cites W2028029365 @default.
- W3204652402 cites W2047057213 @default.
- W3204652402 cites W2064675550 @default.
- W3204652402 cites W2077302143 @default.
- W3204652402 cites W2095436958 @default.
- W3204652402 cites W2111040806 @default.
- W3204652402 cites W2123076731 @default.
- W3204652402 cites W2129921015 @default.
- W3204652402 cites W2239239723 @default.
- W3204652402 cites W2510725918 @default.
- W3204652402 cites W2556093109 @default.
- W3204652402 cites W2560647685 @default.
- W3204652402 cites W2561272927 @default.
- W3204652402 cites W2578354947 @default.
- W3204652402 cites W2726275180 @default.
- W3204652402 cites W2740919303 @default.
- W3204652402 cites W2788388592 @default.
- W3204652402 cites W2796433937 @default.
- W3204652402 cites W2810821963 @default.
- W3204652402 cites W2891577900 @default.
- W3204652402 cites W2894873912 @default.
- W3204652402 cites W2963289713 @default.
- W3204652402 cites W2964309167 @default.
- W3204652402 cites W2972203331 @default.
- W3204652402 cites W2979178745 @default.
- W3204652402 cites W2979478117 @default.
- W3204652402 cites W2985067290 @default.
- W3204652402 cites W2988937804 @default.
- W3204652402 cites W2991489331 @default.
- W3204652402 cites W2997314150 @default.
- W3204652402 cites W2998563994 @default.
- W3204652402 cites W3009172038 @default.
- W3204652402 cites W3014518745 @default.
- W3204652402 cites W3034942609 @default.
- W3204652402 cites W3037024089 @default.
- W3204652402 cites W3041485444 @default.
- W3204652402 cites W3071356955 @default.
- W3204652402 cites W3093720164 @default.
- W3204652402 cites W3098641803 @default.
- W3204652402 cites W3126290370 @default.
- W3204652402 cites W3163781021 @default.
- W3204652402 cites W4205559380 @default.
- W3204652402 doi "https://doi.org/10.3389/frobt.2021.676814" @default.
- W3204652402 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8505524" @default.
- W3204652402 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34651017" @default.
- W3204652402 hasPublicationYear "2021" @default.
- W3204652402 type Work @default.
- W3204652402 sameAs 3204652402 @default.
- W3204652402 citedByCount "3" @default.
- W3204652402 countsByYear W32046524022022 @default.
- W3204652402 countsByYear W32046524022023 @default.
- W3204652402 crossrefType "journal-article" @default.
- W3204652402 hasAuthorship W3204652402A5035627933 @default.
- W3204652402 hasAuthorship W3204652402A5089869999 @default.
- W3204652402 hasAuthorship W3204652402A5091756638 @default.
- W3204652402 hasBestOaLocation W32046524021 @default.
- W3204652402 hasConcept C104317684 @default.
- W3204652402 hasConcept C105795698 @default.
- W3204652402 hasConcept C107457646 @default.
- W3204652402 hasConcept C119857082 @default.
- W3204652402 hasConcept C121332964 @default.
- W3204652402 hasConcept C136764020 @default.
- W3204652402 hasConcept C138885662 @default.
- W3204652402 hasConcept C154945302 @default.
- W3204652402 hasConcept C177264268 @default.
- W3204652402 hasConcept C183003079 @default.
- W3204652402 hasConcept C185592680 @default.
- W3204652402 hasConcept C199360897 @default.
- W3204652402 hasConcept C2777200299 @default.
- W3204652402 hasConcept C2780598303 @default.
- W3204652402 hasConcept C33923547 @default.
- W3204652402 hasConcept C41008148 @default.
- W3204652402 hasConcept C41895202 @default.
- W3204652402 hasConcept C55493867 @default.
- W3204652402 hasConcept C61797465 @default.
- W3204652402 hasConcept C62520636 @default.
- W3204652402 hasConcept C63479239 @default.
- W3204652402 hasConcept C90509273 @default.
- W3204652402 hasConceptScore W3204652402C104317684 @default.
- W3204652402 hasConceptScore W3204652402C105795698 @default.
- W3204652402 hasConceptScore W3204652402C107457646 @default.
- W3204652402 hasConceptScore W3204652402C119857082 @default.
- W3204652402 hasConceptScore W3204652402C121332964 @default.
- W3204652402 hasConceptScore W3204652402C136764020 @default.
- W3204652402 hasConceptScore W3204652402C138885662 @default.
- W3204652402 hasConceptScore W3204652402C154945302 @default.
- W3204652402 hasConceptScore W3204652402C177264268 @default.
- W3204652402 hasConceptScore W3204652402C183003079 @default.
- W3204652402 hasConceptScore W3204652402C185592680 @default.
- W3204652402 hasConceptScore W3204652402C199360897 @default.