Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204653887> ?p ?o ?g. }
- W3204653887 abstract "Since its selection as the method of the year in 2013, single-cell technologies have become mature enough to provide answers to complex research questions. With the growth of single-cell profiling technologies, there has also been a significant increase in data collected from single-cell profilings, resulting in computational challenges to process these massive and complicated datasets. To address these challenges, deep learning (DL) is positioning as a competitive alternative for single-cell analyses besides the traditional machine learning approaches. Here we present a processing pipeline of single-cell RNA-seq data, survey a total of 25 DL algorithms and their applicability for a specific step in the processing pipeline. Specifically, we establish a unified mathematical representation of all variational autoencoder, autoencoder, and generative adversarial network models, compare the training strategies and loss functions for these models, and relate the loss functions of these models to specific objectives of the data processing step. Such presentation will allow readers to choose suitable algorithms for their particular objective at each step in the pipeline. We envision that this survey will serve as an important information portal for learning the application of DL for scRNA-seq analysis and inspire innovative use of DL to address a broader range of new challenges in emerging multi-omics and spatial single-cell sequencing." @default.
- W3204653887 created "2021-10-11" @default.
- W3204653887 creator A5008638025 @default.
- W3204653887 creator A5017681417 @default.
- W3204653887 creator A5024265492 @default.
- W3204653887 creator A5041942814 @default.
- W3204653887 creator A5042784238 @default.
- W3204653887 creator A5043302716 @default.
- W3204653887 creator A5043640443 @default.
- W3204653887 creator A5046855484 @default.
- W3204653887 creator A5056745079 @default.
- W3204653887 creator A5057799604 @default.
- W3204653887 creator A5068887242 @default.
- W3204653887 creator A5073343116 @default.
- W3204653887 creator A5087249630 @default.
- W3204653887 date "2021-09-25" @default.
- W3204653887 modified "2023-09-26" @default.
- W3204653887 title "Deep learning tackles single-cell analysis A survey of deep learning for scRNA-seq analysis" @default.
- W3204653887 cites W1552434751 @default.
- W3204653887 cites W1613448136 @default.
- W3204653887 cites W1631320694 @default.
- W3204653887 cites W1967327758 @default.
- W3204653887 cites W1979283544 @default.
- W3204653887 cites W1989277387 @default.
- W3204653887 cites W2007439698 @default.
- W3204653887 cites W2016053056 @default.
- W3204653887 cites W2019552331 @default.
- W3204653887 cites W2023887100 @default.
- W3204653887 cites W2027557822 @default.
- W3204653887 cites W2030017878 @default.
- W3204653887 cites W2033072655 @default.
- W3204653887 cites W2051658465 @default.
- W3204653887 cites W2053186076 @default.
- W3204653887 cites W2074192627 @default.
- W3204653887 cites W2076513103 @default.
- W3204653887 cites W2079296583 @default.
- W3204653887 cites W2097455931 @default.
- W3204653887 cites W2097645701 @default.
- W3204653887 cites W2102212449 @default.
- W3204653887 cites W2120205807 @default.
- W3204653887 cites W2130410032 @default.
- W3204653887 cites W2130430382 @default.
- W3204653887 cites W2135937351 @default.
- W3204653887 cites W2138621090 @default.
- W3204653887 cites W2139232457 @default.
- W3204653887 cites W2151936673 @default.
- W3204653887 cites W2164943005 @default.
- W3204653887 cites W2177432730 @default.
- W3204653887 cites W2181255501 @default.
- W3204653887 cites W2187089797 @default.
- W3204653887 cites W2190545194 @default.
- W3204653887 cites W2307567449 @default.
- W3204653887 cites W2332292689 @default.
- W3204653887 cites W2343956310 @default.
- W3204653887 cites W2344887288 @default.
- W3204653887 cites W2407916594 @default.
- W3204653887 cites W2465917013 @default.
- W3204653887 cites W2489812534 @default.
- W3204653887 cites W2510746232 @default.
- W3204653887 cites W2511896561 @default.
- W3204653887 cites W2523419694 @default.
- W3204653887 cites W2523620612 @default.
- W3204653887 cites W2526262591 @default.
- W3204653887 cites W2528543174 @default.
- W3204653887 cites W2533508881 @default.
- W3204653887 cites W2534008312 @default.
- W3204653887 cites W2546514099 @default.
- W3204653887 cites W2557334921 @default.
- W3204653887 cites W2559588208 @default.
- W3204653887 cites W2571353615 @default.
- W3204653887 cites W2580989000 @default.
- W3204653887 cites W2600132724 @default.
- W3204653887 cites W2600453489 @default.
- W3204653887 cites W2605195953 @default.
- W3204653887 cites W2607471016 @default.
- W3204653887 cites W2610509384 @default.
- W3204653887 cites W2626990934 @default.
- W3204653887 cites W2739492614 @default.
- W3204653887 cites W2741564801 @default.
- W3204653887 cites W2741943936 @default.
- W3204653887 cites W2747545374 @default.
- W3204653887 cites W2747877289 @default.
- W3204653887 cites W2767423581 @default.
- W3204653887 cites W2773035279 @default.
- W3204653887 cites W2774307122 @default.
- W3204653887 cites W2786672974 @default.
- W3204653887 cites W2788263670 @default.
- W3204653887 cites W2788348358 @default.
- W3204653887 cites W2792693509 @default.
- W3204653887 cites W2794480084 @default.
- W3204653887 cites W2794521141 @default.
- W3204653887 cites W2799273685 @default.
- W3204653887 cites W2800392236 @default.
- W3204653887 cites W2804847416 @default.
- W3204653887 cites W2805516822 @default.
- W3204653887 cites W2805619986 @default.
- W3204653887 cites W2810097927 @default.
- W3204653887 cites W2897346235 @default.
- W3204653887 cites W2897748644 @default.
- W3204653887 cites W2899948177 @default.