Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204654093> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3204654093 abstract "During the last decade, major advancements in the health-care system have developed by offering numerous benefits to the patients throughout the world but resource-poor countries are not benefited through the best practices of health-care due to the lack of educated health-care providers, infrastructure, financial and technical issues, etc. Health-care systems in resource-poor countries face many challenges including increased healthcare cost, patient safety, overtreatment and failure to adopt best practices for health-care. In such countries, massive data generate from various resources including medical imaging, patient record, pharmaceutical reports, and medical devices. The exponential growth in medical data and advancement in health-care technologies focus data analysts to come up with innovative solutions for improving health-care practices in poor countries. Big data analytics provide tools to collect manage and analyze structured and unstructured medical data to find useful insights. Complexity and volume of medical data also show that, Artificial intelligence (AI) has the ability to approximate conclusions without direct human input, which can be applied in the health-care system of resource-poor countries and is now being utilized to further develop health services in high-income countries. Numerous investigations show that, AI performs better than humans in certain health-care undertakings such as diagnosis of cancer, tumor, heart diseases, radiology, etc. Popular AI techniques include machine learning methods such as neural network, support vector machine, and deep learning for structured data as well as natural language processing for unstructured data. There is a variety of hurdles around the use of big data and AI in health-care includes regulation, permission, transparency, and accountability. Also, the collection of data from an individual-a prerequisite for big data analytics is a technical and ethical issue. There are a lot of challenges for AI and big data in health-care but efforts need to be made before these techniques can be deployed in ethical and safe way. In this chapter, we discuss the challenges that AI and big data techniques face in resource-poor health care system and how it can be used to improve health outcomes in resource-poor countries." @default.
- W3204654093 created "2021-10-11" @default.
- W3204654093 creator A5009241024 @default.
- W3204654093 creator A5046245481 @default.
- W3204654093 creator A5071276426 @default.
- W3204654093 date "2021-08-04" @default.
- W3204654093 modified "2023-09-30" @default.
- W3204654093 title "Challenges facing AI and Big data for Resource-poor Healthcare System" @default.
- W3204654093 cites W1541250240 @default.
- W3204654093 cites W1880069577 @default.
- W3204654093 cites W1971402834 @default.
- W3204654093 cites W1996102197 @default.
- W3204654093 cites W2028941259 @default.
- W3204654093 cites W2031124239 @default.
- W3204654093 cites W2042203976 @default.
- W3204654093 cites W2047678298 @default.
- W3204654093 cites W2076977777 @default.
- W3204654093 cites W2082302018 @default.
- W3204654093 cites W2117573188 @default.
- W3204654093 cites W2122088182 @default.
- W3204654093 cites W2125960530 @default.
- W3204654093 cites W2133164940 @default.
- W3204654093 cites W2147258351 @default.
- W3204654093 cites W2167657841 @default.
- W3204654093 cites W2216175760 @default.
- W3204654093 cites W2576252713 @default.
- W3204654093 cites W2591382767 @default.
- W3204654093 cites W2664267452 @default.
- W3204654093 cites W2734505834 @default.
- W3204654093 cites W2802889623 @default.
- W3204654093 cites W2804841028 @default.
- W3204654093 cites W2807501209 @default.
- W3204654093 cites W2887066107 @default.
- W3204654093 cites W2888967035 @default.
- W3204654093 cites W2904616002 @default.
- W3204654093 cites W2910006599 @default.
- W3204654093 cites W2951635356 @default.
- W3204654093 cites W2953532875 @default.
- W3204654093 cites W2960093361 @default.
- W3204654093 cites W2979042524 @default.
- W3204654093 cites W2989512989 @default.
- W3204654093 cites W3032260073 @default.
- W3204654093 cites W3098949126 @default.
- W3204654093 cites W4249535109 @default.
- W3204654093 doi "https://doi.org/10.1109/icesc51422.2021.9532955" @default.
- W3204654093 hasPublicationYear "2021" @default.
- W3204654093 type Work @default.
- W3204654093 sameAs 3204654093 @default.
- W3204654093 citedByCount "5" @default.
- W3204654093 countsByYear W32046540932022 @default.
- W3204654093 countsByYear W32046540932023 @default.
- W3204654093 crossrefType "proceedings-article" @default.
- W3204654093 hasAuthorship W3204654093A5009241024 @default.
- W3204654093 hasAuthorship W3204654093A5046245481 @default.
- W3204654093 hasAuthorship W3204654093A5071276426 @default.
- W3204654093 hasConcept C124101348 @default.
- W3204654093 hasConcept C144133560 @default.
- W3204654093 hasConcept C154945302 @default.
- W3204654093 hasConcept C160735492 @default.
- W3204654093 hasConcept C162324750 @default.
- W3204654093 hasConcept C206345919 @default.
- W3204654093 hasConcept C2522767166 @default.
- W3204654093 hasConcept C31258907 @default.
- W3204654093 hasConcept C41008148 @default.
- W3204654093 hasConcept C50522688 @default.
- W3204654093 hasConcept C56739046 @default.
- W3204654093 hasConcept C75684735 @default.
- W3204654093 hasConcept C79158427 @default.
- W3204654093 hasConceptScore W3204654093C124101348 @default.
- W3204654093 hasConceptScore W3204654093C144133560 @default.
- W3204654093 hasConceptScore W3204654093C154945302 @default.
- W3204654093 hasConceptScore W3204654093C160735492 @default.
- W3204654093 hasConceptScore W3204654093C162324750 @default.
- W3204654093 hasConceptScore W3204654093C206345919 @default.
- W3204654093 hasConceptScore W3204654093C2522767166 @default.
- W3204654093 hasConceptScore W3204654093C31258907 @default.
- W3204654093 hasConceptScore W3204654093C41008148 @default.
- W3204654093 hasConceptScore W3204654093C50522688 @default.
- W3204654093 hasConceptScore W3204654093C56739046 @default.
- W3204654093 hasConceptScore W3204654093C75684735 @default.
- W3204654093 hasConceptScore W3204654093C79158427 @default.
- W3204654093 hasLocation W32046540931 @default.
- W3204654093 hasOpenAccess W3204654093 @default.
- W3204654093 hasPrimaryLocation W32046540931 @default.
- W3204654093 hasRelatedWork W2337265393 @default.
- W3204654093 hasRelatedWork W2509056639 @default.
- W3204654093 hasRelatedWork W2777139086 @default.
- W3204654093 hasRelatedWork W2921734339 @default.
- W3204654093 hasRelatedWork W3013315095 @default.
- W3204654093 hasRelatedWork W3194102186 @default.
- W3204654093 hasRelatedWork W4288085467 @default.
- W3204654093 hasRelatedWork W4381684851 @default.
- W3204654093 hasRelatedWork W4386014817 @default.
- W3204654093 hasRelatedWork W2551093110 @default.
- W3204654093 isParatext "false" @default.
- W3204654093 isRetracted "false" @default.
- W3204654093 magId "3204654093" @default.
- W3204654093 workType "article" @default.