Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204656595> ?p ?o ?g. }
- W3204656595 endingPage "300" @default.
- W3204656595 startingPage "288" @default.
- W3204656595 abstract "Entropy metrics (for example, permutation entropy) are nonlinear measures of irregularity in time series (one-dimensional data). Some of these entropy metrics can be generalised to data on periodic structures such as a grid or lattice pattern (two-dimensional data) using its symmetry, thus enabling their application to images. However, these metrics have not been developed for signals sampled on irregular domains, defined by a graph. Here, we define for the first time an entropy metric to analyse signals measured over irregular graphs by generalising permutation entropy, a well-established nonlinear metric based on the comparison of neighbouring values within patterns in a time series. Our algorithm is based on comparing signal values on neighbouring nodes, using the adjacency matrix. We show that this generalisation preserves the properties of classical permutation for time series and the recent permutation entropy for images, and it can be applied to any graph structure with synthetic and real signals. We expect the present work to enable the extension of other nonlinear dynamic approaches to graph signals." @default.
- W3204656595 created "2021-10-11" @default.
- W3204656595 creator A5027877801 @default.
- W3204656595 creator A5060254662 @default.
- W3204656595 creator A5068911557 @default.
- W3204656595 date "2022-01-01" @default.
- W3204656595 modified "2023-10-09" @default.
- W3204656595 title "Permutation Entropy for Graph Signals" @default.
- W3204656595 cites W1420730218 @default.
- W3204656595 cites W1512161016 @default.
- W3204656595 cites W1668942716 @default.
- W3204656595 cites W2014683958 @default.
- W3204656595 cites W2016423476 @default.
- W3204656595 cites W2017091714 @default.
- W3204656595 cites W2018876117 @default.
- W3204656595 cites W2041390652 @default.
- W3204656595 cites W2060540122 @default.
- W3204656595 cites W2069092382 @default.
- W3204656595 cites W2080132175 @default.
- W3204656595 cites W2096209718 @default.
- W3204656595 cites W2101491865 @default.
- W3204656595 cites W2280719928 @default.
- W3204656595 cites W2318640187 @default.
- W3204656595 cites W2322045482 @default.
- W3204656595 cites W2333775360 @default.
- W3204656595 cites W2432419794 @default.
- W3204656595 cites W2482093979 @default.
- W3204656595 cites W2498166457 @default.
- W3204656595 cites W2677116626 @default.
- W3204656595 cites W2761723167 @default.
- W3204656595 cites W2772339501 @default.
- W3204656595 cites W2783983474 @default.
- W3204656595 cites W2792354770 @default.
- W3204656595 cites W2796431263 @default.
- W3204656595 cites W2886507673 @default.
- W3204656595 cites W2892287261 @default.
- W3204656595 cites W2897035928 @default.
- W3204656595 cites W2913157389 @default.
- W3204656595 cites W2921723074 @default.
- W3204656595 cites W2936442851 @default.
- W3204656595 cites W3012392559 @default.
- W3204656595 cites W3015581137 @default.
- W3204656595 cites W3095738619 @default.
- W3204656595 cites W3107724517 @default.
- W3204656595 cites W3130571863 @default.
- W3204656595 cites W3186281556 @default.
- W3204656595 cites W356566955 @default.
- W3204656595 cites W4206941957 @default.
- W3204656595 cites W4288058642 @default.
- W3204656595 doi "https://doi.org/10.1109/tsipn.2022.3167333" @default.
- W3204656595 hasPublicationYear "2022" @default.
- W3204656595 type Work @default.
- W3204656595 sameAs 3204656595 @default.
- W3204656595 citedByCount "5" @default.
- W3204656595 countsByYear W32046565952022 @default.
- W3204656595 countsByYear W32046565952023 @default.
- W3204656595 crossrefType "journal-article" @default.
- W3204656595 hasAuthorship W3204656595A5027877801 @default.
- W3204656595 hasAuthorship W3204656595A5060254662 @default.
- W3204656595 hasAuthorship W3204656595A5068911557 @default.
- W3204656595 hasBestOaLocation W32046565951 @default.
- W3204656595 hasConcept C106301342 @default.
- W3204656595 hasConcept C110484373 @default.
- W3204656595 hasConcept C11413529 @default.
- W3204656595 hasConcept C114614502 @default.
- W3204656595 hasConcept C121332964 @default.
- W3204656595 hasConcept C132525143 @default.
- W3204656595 hasConcept C158622935 @default.
- W3204656595 hasConcept C180356752 @default.
- W3204656595 hasConcept C33923547 @default.
- W3204656595 hasConcept C41008148 @default.
- W3204656595 hasConcept C62520636 @default.
- W3204656595 hasConcept C68965932 @default.
- W3204656595 hasConceptScore W3204656595C106301342 @default.
- W3204656595 hasConceptScore W3204656595C110484373 @default.
- W3204656595 hasConceptScore W3204656595C11413529 @default.
- W3204656595 hasConceptScore W3204656595C114614502 @default.
- W3204656595 hasConceptScore W3204656595C121332964 @default.
- W3204656595 hasConceptScore W3204656595C132525143 @default.
- W3204656595 hasConceptScore W3204656595C158622935 @default.
- W3204656595 hasConceptScore W3204656595C180356752 @default.
- W3204656595 hasConceptScore W3204656595C33923547 @default.
- W3204656595 hasConceptScore W3204656595C41008148 @default.
- W3204656595 hasConceptScore W3204656595C62520636 @default.
- W3204656595 hasConceptScore W3204656595C68965932 @default.
- W3204656595 hasFunder F4320319993 @default.
- W3204656595 hasLocation W32046565951 @default.
- W3204656595 hasLocation W32046565952 @default.
- W3204656595 hasLocation W32046565953 @default.
- W3204656595 hasLocation W32046565954 @default.
- W3204656595 hasOpenAccess W3204656595 @default.
- W3204656595 hasPrimaryLocation W32046565951 @default.
- W3204656595 hasRelatedWork W2061646779 @default.
- W3204656595 hasRelatedWork W2102534583 @default.
- W3204656595 hasRelatedWork W2353839841 @default.
- W3204656595 hasRelatedWork W2374780422 @default.
- W3204656595 hasRelatedWork W3134848558 @default.
- W3204656595 hasRelatedWork W3164306936 @default.