Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204661321> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3204661321 abstract "This study demonstrates the efficacy of Bayesian Optimization to improve the performance of machine learning models for predicting the strength properties of concrete specimens. There exists several machine learning models for predicting concrete compressive strength. Most of these models have hyper-parameters that, if properly tuned, will improve the models even further. Although the selection of these hyperparameters has a significant impact on the performance of models, the process of hyperparameter tuning is often ignored in previous works. In the first phase of the study, five machine learning models(SVR, ABR, RFR, GBR and KNN Regressor) were compared on the basis of rmse, mae and r-squared value on the test set. Two best performing models(GBR and RFR) were selected among the five models for further improvement. In the second phase, hyperparameter tuning by Bayesian Optimization method was done on these two models. Experimental results testify that Bayesian Optimization on these two models improved their prediction performance further." @default.
- W3204661321 created "2021-10-11" @default.
- W3204661321 creator A5025921249 @default.
- W3204661321 date "2021-08-25" @default.
- W3204661321 modified "2023-09-27" @default.
- W3204661321 title "Fine Tuning the Prediction of the Compressive Strength of Concrete : A Bayesian Optimization Based Approach" @default.
- W3204661321 cites W1510052597 @default.
- W3204661321 cites W1968969471 @default.
- W3204661321 cites W1969513389 @default.
- W3204661321 cites W1980004173 @default.
- W3204661321 cites W2026354995 @default.
- W3204661321 cites W2038808304 @default.
- W3204661321 cites W2061933243 @default.
- W3204661321 cites W2088053778 @default.
- W3204661321 cites W2088794999 @default.
- W3204661321 cites W2139929624 @default.
- W3204661321 cites W2475602767 @default.
- W3204661321 cites W2801822775 @default.
- W3204661321 cites W2964938350 @default.
- W3204661321 cites W2970393605 @default.
- W3204661321 cites W2976039593 @default.
- W3204661321 cites W2977280727 @default.
- W3204661321 cites W3027905172 @default.
- W3204661321 cites W3038033549 @default.
- W3204661321 cites W3099202297 @default.
- W3204661321 cites W3125850143 @default.
- W3204661321 cites W4230674625 @default.
- W3204661321 cites W4238530616 @default.
- W3204661321 cites W4239510810 @default.
- W3204661321 cites W4244895750 @default.
- W3204661321 cites W843278983 @default.
- W3204661321 cites W2041041500 @default.
- W3204661321 doi "https://doi.org/10.1109/inista52262.2021.9548593" @default.
- W3204661321 hasPublicationYear "2021" @default.
- W3204661321 type Work @default.
- W3204661321 sameAs 3204661321 @default.
- W3204661321 citedByCount "0" @default.
- W3204661321 crossrefType "proceedings-article" @default.
- W3204661321 hasAuthorship W3204661321A5025921249 @default.
- W3204661321 hasConcept C105795698 @default.
- W3204661321 hasConcept C107673813 @default.
- W3204661321 hasConcept C119857082 @default.
- W3204661321 hasConcept C139945424 @default.
- W3204661321 hasConcept C154945302 @default.
- W3204661321 hasConcept C169903167 @default.
- W3204661321 hasConcept C177264268 @default.
- W3204661321 hasConcept C199360897 @default.
- W3204661321 hasConcept C2778049539 @default.
- W3204661321 hasConcept C33923547 @default.
- W3204661321 hasConcept C41008148 @default.
- W3204661321 hasConcept C8642999 @default.
- W3204661321 hasConceptScore W3204661321C105795698 @default.
- W3204661321 hasConceptScore W3204661321C107673813 @default.
- W3204661321 hasConceptScore W3204661321C119857082 @default.
- W3204661321 hasConceptScore W3204661321C139945424 @default.
- W3204661321 hasConceptScore W3204661321C154945302 @default.
- W3204661321 hasConceptScore W3204661321C169903167 @default.
- W3204661321 hasConceptScore W3204661321C177264268 @default.
- W3204661321 hasConceptScore W3204661321C199360897 @default.
- W3204661321 hasConceptScore W3204661321C2778049539 @default.
- W3204661321 hasConceptScore W3204661321C33923547 @default.
- W3204661321 hasConceptScore W3204661321C41008148 @default.
- W3204661321 hasConceptScore W3204661321C8642999 @default.
- W3204661321 hasLocation W32046613211 @default.
- W3204661321 hasOpenAccess W3204661321 @default.
- W3204661321 hasPrimaryLocation W32046613211 @default.
- W3204661321 hasRelatedWork W2200000192 @default.
- W3204661321 hasRelatedWork W2405673391 @default.
- W3204661321 hasRelatedWork W2782093256 @default.
- W3204661321 hasRelatedWork W2963474950 @default.
- W3204661321 hasRelatedWork W3155135229 @default.
- W3204661321 hasRelatedWork W3155731460 @default.
- W3204661321 hasRelatedWork W3198858656 @default.
- W3204661321 hasRelatedWork W3199608561 @default.
- W3204661321 hasRelatedWork W3214139057 @default.
- W3204661321 hasRelatedWork W4212859008 @default.
- W3204661321 isParatext "false" @default.
- W3204661321 isRetracted "false" @default.
- W3204661321 magId "3204661321" @default.
- W3204661321 workType "article" @default.