Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204661796> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3204661796 endingPage "579" @default.
- W3204661796 startingPage "563" @default.
- W3204661796 abstract "In recent years, there have been significant developments in Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA systems only focus on answer generation techniques and not on answer verbalization. However, in real-world scenarios (e.g., voice assistants such as Alexa, Siri, etc.), users prefer verbalized answers instead of a generated response. This paper addresses the task of answer verbalization for (complex) question answering over knowledge graphs. In this context, we propose a multi-task-based answer verbalization framework: VOGUE (Verbalization thrOuGh mUlti-task lEarning). The VOGUE framework attempts to generate a verbalized answer using a hybrid approach through a multi-task learning paradigm. Our framework can generate results based on using questions and queries as inputs concurrently. VOGUE comprises four modules that are trained simultaneously through multi-task learning. We evaluate our framework on existing datasets for answer verbalization, and it outperforms all current baselines on both BLEU and METEOR scores." @default.
- W3204661796 created "2021-10-11" @default.
- W3204661796 creator A5002627051 @default.
- W3204661796 creator A5009376620 @default.
- W3204661796 creator A5067133778 @default.
- W3204661796 creator A5088289518 @default.
- W3204661796 creator A5091218791 @default.
- W3204661796 date "2021-01-01" @default.
- W3204661796 modified "2023-09-23" @default.
- W3204661796 title "VOGUE: Answer Verbalization Through Multi-Task Learning" @default.
- W3204661796 cites W1552847225 @default.
- W3204661796 cites W1902237438 @default.
- W3204661796 cites W2080133951 @default.
- W3204661796 cites W2101105183 @default.
- W3204661796 cites W2151149636 @default.
- W3204661796 cites W2250539671 @default.
- W3204661796 cites W2260667602 @default.
- W3204661796 cites W2739874095 @default.
- W3204661796 cites W2747911319 @default.
- W3204661796 cites W2767322653 @default.
- W3204661796 cites W2788460763 @default.
- W3204661796 cites W2798914047 @default.
- W3204661796 cites W2963677766 @default.
- W3204661796 cites W3030844777 @default.
- W3204661796 cites W3034822304 @default.
- W3204661796 cites W3034902017 @default.
- W3204661796 cites W3034987089 @default.
- W3204661796 cites W3035356612 @default.
- W3204661796 cites W3035588244 @default.
- W3204661796 cites W309516578 @default.
- W3204661796 cites W3098006744 @default.
- W3204661796 cites W3104415840 @default.
- W3204661796 cites W3157022402 @default.
- W3204661796 cites W3164228909 @default.
- W3204661796 cites W3165875610 @default.
- W3204661796 doi "https://doi.org/10.1007/978-3-030-86523-8_34" @default.
- W3204661796 hasPublicationYear "2021" @default.
- W3204661796 type Work @default.
- W3204661796 sameAs 3204661796 @default.
- W3204661796 citedByCount "2" @default.
- W3204661796 countsByYear W32046617962023 @default.
- W3204661796 crossrefType "book-chapter" @default.
- W3204661796 hasAuthorship W3204661796A5002627051 @default.
- W3204661796 hasAuthorship W3204661796A5009376620 @default.
- W3204661796 hasAuthorship W3204661796A5067133778 @default.
- W3204661796 hasAuthorship W3204661796A5088289518 @default.
- W3204661796 hasAuthorship W3204661796A5091218791 @default.
- W3204661796 hasBestOaLocation W32046617962 @default.
- W3204661796 hasConcept C107457646 @default.
- W3204661796 hasConcept C127413603 @default.
- W3204661796 hasConcept C145420912 @default.
- W3204661796 hasConcept C15744967 @default.
- W3204661796 hasConcept C201995342 @default.
- W3204661796 hasConcept C2780451532 @default.
- W3204661796 hasConcept C41008148 @default.
- W3204661796 hasConceptScore W3204661796C107457646 @default.
- W3204661796 hasConceptScore W3204661796C127413603 @default.
- W3204661796 hasConceptScore W3204661796C145420912 @default.
- W3204661796 hasConceptScore W3204661796C15744967 @default.
- W3204661796 hasConceptScore W3204661796C201995342 @default.
- W3204661796 hasConceptScore W3204661796C2780451532 @default.
- W3204661796 hasConceptScore W3204661796C41008148 @default.
- W3204661796 hasLocation W32046617961 @default.
- W3204661796 hasLocation W32046617962 @default.
- W3204661796 hasOpenAccess W3204661796 @default.
- W3204661796 hasPrimaryLocation W32046617961 @default.
- W3204661796 hasRelatedWork W1607472309 @default.
- W3204661796 hasRelatedWork W2081647779 @default.
- W3204661796 hasRelatedWork W2370597599 @default.
- W3204661796 hasRelatedWork W2748952813 @default.
- W3204661796 hasRelatedWork W2899084033 @default.
- W3204661796 hasRelatedWork W2918095851 @default.
- W3204661796 hasRelatedWork W2963891724 @default.
- W3204661796 hasRelatedWork W3128051602 @default.
- W3204661796 hasRelatedWork W3217387898 @default.
- W3204661796 hasRelatedWork W4237750775 @default.
- W3204661796 isParatext "false" @default.
- W3204661796 isRetracted "false" @default.
- W3204661796 magId "3204661796" @default.
- W3204661796 workType "book-chapter" @default.