Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204665247> ?p ?o ?g. }
- W3204665247 endingPage "127437" @default.
- W3204665247 startingPage "127437" @default.
- W3204665247 abstract "Accurate prediction of uptake and accumulation of organic contaminants by crops from soils is essential to assessing human exposure via the food chain. However, traditional empirical or mechanistic models frequently show variable performance due to complex interactions among contaminants, soils, and plants. Thus, in this study different machine learning algorithms were compared and applied to predict root concentration factors (RCFs) based on a dataset comprising 57 chemicals and 11 crops, followed by comparison with a traditional linear regression model as the benchmark. The RCF patterns and predictions were investigated by unsupervised t-distributed stochastic neighbor embedding and four supervised machine learning models including Random Forest, Gradient Boosting Regression Tree, Fully Connected Neural Network, and Supporting Vector Regression based on 15 property descriptors. The Fully Connected Neural Network demonstrated superior prediction performance for RCFs (R2 =0.79, mean absolute error [MAE] = 0.22) over other machine learning models (R2 =0.68-0.76, MAE = 0.23-0.26). All four machine learning models performed better than the traditional linear regression model (R2 =0.62, MAE = 0.29). Four key property descriptors were identified in predicting RCFs. Specifically, increasing root lipid content and decreasing soil organic matter content increased RCFs, while increasing excess molar refractivity and molecular volume of contaminants decreased RCFs. These results show that machine learning models can improve prediction accuracy by learning nonlinear relationships between RCFs and properties of contaminants, soils, and plants." @default.
- W3204665247 created "2021-10-11" @default.
- W3204665247 creator A5006891336 @default.
- W3204665247 creator A5018452412 @default.
- W3204665247 creator A5026814938 @default.
- W3204665247 creator A5030519998 @default.
- W3204665247 creator A5059351364 @default.
- W3204665247 creator A5065859286 @default.
- W3204665247 creator A5076699095 @default.
- W3204665247 date "2022-02-01" @default.
- W3204665247 modified "2023-10-16" @default.
- W3204665247 title "Predicting crop root concentration factors of organic contaminants with machine learning models" @default.
- W3204665247 cites W1498436455 @default.
- W3204665247 cites W1678356000 @default.
- W3204665247 cites W1965938206 @default.
- W3204665247 cites W1973522609 @default.
- W3204665247 cites W1981679201 @default.
- W3204665247 cites W1984024747 @default.
- W3204665247 cites W1989664861 @default.
- W3204665247 cites W2003445363 @default.
- W3204665247 cites W2015532720 @default.
- W3204665247 cites W2026758870 @default.
- W3204665247 cites W2026832870 @default.
- W3204665247 cites W2029623159 @default.
- W3204665247 cites W2033495141 @default.
- W3204665247 cites W2034568531 @default.
- W3204665247 cites W2041261103 @default.
- W3204665247 cites W2042760972 @default.
- W3204665247 cites W2065617207 @default.
- W3204665247 cites W2082095032 @default.
- W3204665247 cites W2102636708 @default.
- W3204665247 cites W2103496339 @default.
- W3204665247 cites W2112977259 @default.
- W3204665247 cites W2117380901 @default.
- W3204665247 cites W2125847307 @default.
- W3204665247 cites W2154290668 @default.
- W3204665247 cites W2164083379 @default.
- W3204665247 cites W2220469273 @default.
- W3204665247 cites W2312735872 @default.
- W3204665247 cites W2749443518 @default.
- W3204665247 cites W2764221404 @default.
- W3204665247 cites W2797182350 @default.
- W3204665247 cites W2805018761 @default.
- W3204665247 cites W2895884529 @default.
- W3204665247 cites W2911524048 @default.
- W3204665247 cites W2911964244 @default.
- W3204665247 cites W2914471661 @default.
- W3204665247 cites W2922853768 @default.
- W3204665247 cites W2927771391 @default.
- W3204665247 cites W2934599455 @default.
- W3204665247 cites W2941841010 @default.
- W3204665247 cites W2949006411 @default.
- W3204665247 cites W2963582168 @default.
- W3204665247 cites W2969284699 @default.
- W3204665247 cites W2971888110 @default.
- W3204665247 cites W2973043695 @default.
- W3204665247 cites W2985267253 @default.
- W3204665247 cites W2989747508 @default.
- W3204665247 cites W2990200213 @default.
- W3204665247 cites W2995744115 @default.
- W3204665247 cites W3045350530 @default.
- W3204665247 cites W3093252734 @default.
- W3204665247 cites W3093983574 @default.
- W3204665247 cites W3105183541 @default.
- W3204665247 cites W3113447514 @default.
- W3204665247 cites W3126669490 @default.
- W3204665247 cites W3128460238 @default.
- W3204665247 cites W4230677055 @default.
- W3204665247 doi "https://doi.org/10.1016/j.jhazmat.2021.127437" @default.
- W3204665247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34678561" @default.
- W3204665247 hasPublicationYear "2022" @default.
- W3204665247 type Work @default.
- W3204665247 sameAs 3204665247 @default.
- W3204665247 citedByCount "12" @default.
- W3204665247 countsByYear W32046652472022 @default.
- W3204665247 countsByYear W32046652472023 @default.
- W3204665247 crossrefType "journal-article" @default.
- W3204665247 hasAuthorship W3204665247A5006891336 @default.
- W3204665247 hasAuthorship W3204665247A5018452412 @default.
- W3204665247 hasAuthorship W3204665247A5026814938 @default.
- W3204665247 hasAuthorship W3204665247A5030519998 @default.
- W3204665247 hasAuthorship W3204665247A5059351364 @default.
- W3204665247 hasAuthorship W3204665247A5065859286 @default.
- W3204665247 hasAuthorship W3204665247A5076699095 @default.
- W3204665247 hasBestOaLocation W32046652472 @default.
- W3204665247 hasConcept C105795698 @default.
- W3204665247 hasConcept C119857082 @default.
- W3204665247 hasConcept C12267149 @default.
- W3204665247 hasConcept C154945302 @default.
- W3204665247 hasConcept C159390177 @default.
- W3204665247 hasConcept C159750122 @default.
- W3204665247 hasConcept C169258074 @default.
- W3204665247 hasConcept C186060115 @default.
- W3204665247 hasConcept C33923547 @default.
- W3204665247 hasConcept C39432304 @default.
- W3204665247 hasConcept C41008148 @default.
- W3204665247 hasConcept C45804977 @default.
- W3204665247 hasConcept C48921125 @default.