Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204673515> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3204673515 abstract "Social Networking has become a platform for people to post their views and opinions about everything. People tend to mix their regional language with other languages that they are familiar with which gives rise to Mixed-Case Languages. These multilingual texts pose a great challenge to conventional Natural Language Processing systems, which currently rely greatly on monolingual resources and cannot handle the combination of multiple languages. The study of people's attitude, opinions, views and to classify them as positive, negative or neutral is called Sentiment Analysis. It is an extremely powerful tool in today's world since it allows businesses, restaurants, internet providers, airlines, etc to quickly detect dissatisfied customers, categorize issues with urgency and prioritize responses. The proposed system focuses on the sentiment analysis of a Hinglish (Hindi-English) text corpus. This paper discusses various approaches such as the Lexicon-Based, Rule-Based and Machine Learning approaches to study the effectiveness of the approach chosen for classifying the text corpus with their appropriate sentiment labels. The proposed Machine Learning techniques are evaluated using parameters Precision, Recall, F1-score and Accuracy and out of all the approaches used, the Support Vector Machine (SVM) and Logistic Regression (LR) approaches have given the best results with both algorithms giving an F1-score of 0.86 and accuracy of 86%." @default.
- W3204673515 created "2021-10-11" @default.
- W3204673515 creator A5005705958 @default.
- W3204673515 creator A5033078552 @default.
- W3204673515 creator A5038700264 @default.
- W3204673515 creator A5057351370 @default.
- W3204673515 creator A5066604548 @default.
- W3204673515 date "2021-09-02" @default.
- W3204673515 modified "2023-09-25" @default.
- W3204673515 title "Sentiment Analysis of Mixed-Case Language using Natural Language Processing" @default.
- W3204673515 cites W1797037330 @default.
- W3204673515 cites W2278629362 @default.
- W3204673515 cites W2735801230 @default.
- W3204673515 cites W2772225524 @default.
- W3204673515 cites W2805354644 @default.
- W3204673515 cites W2890269216 @default.
- W3204673515 cites W2955583213 @default.
- W3204673515 cites W2966027762 @default.
- W3204673515 cites W3012159372 @default.
- W3204673515 cites W3032928500 @default.
- W3204673515 cites W3093543003 @default.
- W3204673515 cites W4235312256 @default.
- W3204673515 cites W4252009014 @default.
- W3204673515 doi "https://doi.org/10.1109/icirca51532.2021.9544554" @default.
- W3204673515 hasPublicationYear "2021" @default.
- W3204673515 type Work @default.
- W3204673515 sameAs 3204673515 @default.
- W3204673515 citedByCount "3" @default.
- W3204673515 countsByYear W32046735152022 @default.
- W3204673515 countsByYear W32046735152023 @default.
- W3204673515 crossrefType "proceedings-article" @default.
- W3204673515 hasAuthorship W3204673515A5005705958 @default.
- W3204673515 hasAuthorship W3204673515A5033078552 @default.
- W3204673515 hasAuthorship W3204673515A5038700264 @default.
- W3204673515 hasAuthorship W3204673515A5057351370 @default.
- W3204673515 hasAuthorship W3204673515A5066604548 @default.
- W3204673515 hasConcept C100660578 @default.
- W3204673515 hasConcept C110875604 @default.
- W3204673515 hasConcept C119857082 @default.
- W3204673515 hasConcept C12267149 @default.
- W3204673515 hasConcept C136764020 @default.
- W3204673515 hasConcept C138885662 @default.
- W3204673515 hasConcept C148524875 @default.
- W3204673515 hasConcept C154945302 @default.
- W3204673515 hasConcept C195324797 @default.
- W3204673515 hasConcept C204321447 @default.
- W3204673515 hasConcept C2778121359 @default.
- W3204673515 hasConcept C41008148 @default.
- W3204673515 hasConcept C41895202 @default.
- W3204673515 hasConcept C519982507 @default.
- W3204673515 hasConcept C66402592 @default.
- W3204673515 hasConcept C81669768 @default.
- W3204673515 hasConcept C94124525 @default.
- W3204673515 hasConceptScore W3204673515C100660578 @default.
- W3204673515 hasConceptScore W3204673515C110875604 @default.
- W3204673515 hasConceptScore W3204673515C119857082 @default.
- W3204673515 hasConceptScore W3204673515C12267149 @default.
- W3204673515 hasConceptScore W3204673515C136764020 @default.
- W3204673515 hasConceptScore W3204673515C138885662 @default.
- W3204673515 hasConceptScore W3204673515C148524875 @default.
- W3204673515 hasConceptScore W3204673515C154945302 @default.
- W3204673515 hasConceptScore W3204673515C195324797 @default.
- W3204673515 hasConceptScore W3204673515C204321447 @default.
- W3204673515 hasConceptScore W3204673515C2778121359 @default.
- W3204673515 hasConceptScore W3204673515C41008148 @default.
- W3204673515 hasConceptScore W3204673515C41895202 @default.
- W3204673515 hasConceptScore W3204673515C519982507 @default.
- W3204673515 hasConceptScore W3204673515C66402592 @default.
- W3204673515 hasConceptScore W3204673515C81669768 @default.
- W3204673515 hasConceptScore W3204673515C94124525 @default.
- W3204673515 hasLocation W32046735151 @default.
- W3204673515 hasOpenAccess W3204673515 @default.
- W3204673515 hasPrimaryLocation W32046735151 @default.
- W3204673515 hasRelatedWork W1522545030 @default.
- W3204673515 hasRelatedWork W1994972134 @default.
- W3204673515 hasRelatedWork W2016965993 @default.
- W3204673515 hasRelatedWork W2025642731 @default.
- W3204673515 hasRelatedWork W2083014268 @default.
- W3204673515 hasRelatedWork W2296544548 @default.
- W3204673515 hasRelatedWork W3204673515 @default.
- W3204673515 hasRelatedWork W4200526184 @default.
- W3204673515 hasRelatedWork W4226073804 @default.
- W3204673515 hasRelatedWork W4300191857 @default.
- W3204673515 isParatext "false" @default.
- W3204673515 isRetracted "false" @default.
- W3204673515 magId "3204673515" @default.
- W3204673515 workType "article" @default.