Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204673980> ?p ?o ?g. }
- W3204673980 endingPage "100739" @default.
- W3204673980 startingPage "100739" @default.
- W3204673980 abstract "Porous crystalline materials, such as zeolites and metal-organic frameworks (MOFs), have shown great promises with superior separation, catalysis and upgrading performances in many areas of energy, the environment and health. However, the discovery of new zeolites and MOFs with desired properties is a complex process that often involves trial-and-error experimental/computational approaches. Computational discovery of new materials often involves learning and optimizing more than one objective such as stability, system equilibrium and efficiency. The knowledge gaps between computational prediction and actual synthesis of materials present hurdles to scientific discovery. Advances are underway in machine learning (ML)—in particular, deep reinforcement learning (DRL)—to address these challenges. The goal of this article is to systematically present the key elements and sketch the first steps towards ML-based design and discovery of new zeolites and similar crystalline materials." @default.
- W3204673980 created "2021-10-11" @default.
- W3204673980 creator A5065235636 @default.
- W3204673980 creator A5081611645 @default.
- W3204673980 date "2022-03-01" @default.
- W3204673980 modified "2023-10-16" @default.
- W3204673980 title "Machine learning for the design and discovery of zeolites and porous crystalline materials" @default.
- W3204673980 cites W1531674615 @default.
- W3204673980 cites W1963883777 @default.
- W3204673980 cites W1969555886 @default.
- W3204673980 cites W1972641397 @default.
- W3204673980 cites W1975147762 @default.
- W3204673980 cites W1988037271 @default.
- W3204673980 cites W1993118636 @default.
- W3204673980 cites W2019465613 @default.
- W3204673980 cites W2025444507 @default.
- W3204673980 cites W2029413789 @default.
- W3204673980 cites W2050863372 @default.
- W3204673980 cites W2051311193 @default.
- W3204673980 cites W2052593583 @default.
- W3204673980 cites W2053294416 @default.
- W3204673980 cites W2053700726 @default.
- W3204673980 cites W2055974394 @default.
- W3204673980 cites W2057573569 @default.
- W3204673980 cites W2084266203 @default.
- W3204673980 cites W2123306226 @default.
- W3204673980 cites W2132445456 @default.
- W3204673980 cites W2133877867 @default.
- W3204673980 cites W2138429893 @default.
- W3204673980 cites W2145339207 @default.
- W3204673980 cites W2171268876 @default.
- W3204673980 cites W2257979135 @default.
- W3204673980 cites W2290847742 @default.
- W3204673980 cites W2309747873 @default.
- W3204673980 cites W2316126360 @default.
- W3204673980 cites W2334172904 @default.
- W3204673980 cites W2345765836 @default.
- W3204673980 cites W2421707041 @default.
- W3204673980 cites W2509907061 @default.
- W3204673980 cites W2527189750 @default.
- W3204673980 cites W2557778781 @default.
- W3204673980 cites W2594183968 @default.
- W3204673980 cites W2727106778 @default.
- W3204673980 cites W2734520197 @default.
- W3204673980 cites W2736137960 @default.
- W3204673980 cites W2766447205 @default.
- W3204673980 cites W2807070436 @default.
- W3204673980 cites W2883583109 @default.
- W3204673980 cites W2900627324 @default.
- W3204673980 cites W2910175903 @default.
- W3204673980 cites W2941423636 @default.
- W3204673980 cites W2947902713 @default.
- W3204673980 cites W2968923792 @default.
- W3204673980 cites W2979285519 @default.
- W3204673980 cites W3008352295 @default.
- W3204673980 cites W3013746329 @default.
- W3204673980 cites W3028032948 @default.
- W3204673980 cites W3047312460 @default.
- W3204673980 cites W3083840918 @default.
- W3204673980 cites W3096831136 @default.
- W3204673980 cites W3098321015 @default.
- W3204673980 cites W3101883705 @default.
- W3204673980 cites W3102380997 @default.
- W3204673980 cites W3134022768 @default.
- W3204673980 cites W3138000221 @default.
- W3204673980 cites W3140372160 @default.
- W3204673980 cites W3143460494 @default.
- W3204673980 cites W3160906590 @default.
- W3204673980 cites W3201046987 @default.
- W3204673980 doi "https://doi.org/10.1016/j.coche.2021.100739" @default.
- W3204673980 hasPublicationYear "2022" @default.
- W3204673980 type Work @default.
- W3204673980 sameAs 3204673980 @default.
- W3204673980 citedByCount "13" @default.
- W3204673980 countsByYear W32046739802022 @default.
- W3204673980 countsByYear W32046739802023 @default.
- W3204673980 crossrefType "journal-article" @default.
- W3204673980 hasAuthorship W3204673980A5065235636 @default.
- W3204673980 hasAuthorship W3204673980A5081611645 @default.
- W3204673980 hasConcept C111919701 @default.
- W3204673980 hasConcept C11413529 @default.
- W3204673980 hasConcept C127413603 @default.
- W3204673980 hasConcept C15744967 @default.
- W3204673980 hasConcept C159985019 @default.
- W3204673980 hasConcept C171250308 @default.
- W3204673980 hasConcept C174998907 @default.
- W3204673980 hasConcept C183696295 @default.
- W3204673980 hasConcept C188147891 @default.
- W3204673980 hasConcept C192562407 @default.
- W3204673980 hasConcept C207505557 @default.
- W3204673980 hasConcept C21547014 @default.
- W3204673980 hasConcept C21880701 @default.
- W3204673980 hasConcept C2779231336 @default.
- W3204673980 hasConcept C2984917352 @default.
- W3204673980 hasConcept C41008148 @default.
- W3204673980 hasConcept C6648577 @default.
- W3204673980 hasConcept C85345410 @default.
- W3204673980 hasConcept C93453677 @default.