Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204676295> ?p ?o ?g. }
- W3204676295 endingPage "6446" @default.
- W3204676295 startingPage "6446" @default.
- W3204676295 abstract "Freezing of Gait (FOG) is an impairment that affects the majority of patients in the advanced stages of Parkinson's Disease (PD). FOG can lead to sudden falls and injuries, negatively impacting the quality of life for the patients and their families. Rhythmic Auditory Stimulation (RAS) can be used to help patients recover from FOG and resume normal gait. RAS might be ineffective due to the latency between the start of a FOG event, its detection and initialization of RAS. We propose a system capable of both FOG prediction and detection using signals from tri-axial accelerometer sensors that will be useful in initializing RAS with minimal latency. We compared the performance of several time frequency analysis techniques, including moving windows extracted from the signals, handcrafted features, Recurrence Plots (RP), Short Time Fourier Transform (STFT), Discreet Wavelet Transform (DWT) and Pseudo Wigner Ville Distribution (PWVD) with Deep Learning (DL) based Long Short Term Memory (LSTM) and Convolutional Neural Networks (CNN). We also propose three Ensemble Network Architectures that combine all the time frequency representations and DL architectures. Experimental results show that our ensemble architectures significantly improve the performance compared with existing techniques. We also present the results of applying our method trained on a publicly available dataset to data collected from patients using wearable sensors in collaboration with A.T. Still University." @default.
- W3204676295 created "2021-10-11" @default.
- W3204676295 creator A5002342230 @default.
- W3204676295 creator A5028354888 @default.
- W3204676295 creator A5058927498 @default.
- W3204676295 creator A5069263383 @default.
- W3204676295 date "2021-09-27" @default.
- W3204676295 modified "2023-09-23" @default.
- W3204676295 title "A Comparative Study of Time Frequency Representation Techniques for Freeze of Gait Detection and Prediction" @default.
- W3204676295 cites W134203394 @default.
- W3204676295 cites W1492555660 @default.
- W3204676295 cites W1556796815 @default.
- W3204676295 cites W1585759200 @default.
- W3204676295 cites W1840860027 @default.
- W3204676295 cites W1966267838 @default.
- W3204676295 cites W1967659552 @default.
- W3204676295 cites W1968018273 @default.
- W3204676295 cites W1968232944 @default.
- W3204676295 cites W1998182557 @default.
- W3204676295 cites W2013818400 @default.
- W3204676295 cites W2014115543 @default.
- W3204676295 cites W2025926226 @default.
- W3204676295 cites W2054780155 @default.
- W3204676295 cites W2059185913 @default.
- W3204676295 cites W2062804064 @default.
- W3204676295 cites W2064675550 @default.
- W3204676295 cites W2094905985 @default.
- W3204676295 cites W2099593264 @default.
- W3204676295 cites W2100832343 @default.
- W3204676295 cites W2109553965 @default.
- W3204676295 cites W2112442628 @default.
- W3204676295 cites W2114134396 @default.
- W3204676295 cites W2114808721 @default.
- W3204676295 cites W2122354382 @default.
- W3204676295 cites W2125036621 @default.
- W3204676295 cites W2127235324 @default.
- W3204676295 cites W2127700844 @default.
- W3204676295 cites W2128290688 @default.
- W3204676295 cites W2128892560 @default.
- W3204676295 cites W2135293965 @default.
- W3204676295 cites W2136883398 @default.
- W3204676295 cites W2142430469 @default.
- W3204676295 cites W2145362071 @default.
- W3204676295 cites W2148143831 @default.
- W3204676295 cites W2152276356 @default.
- W3204676295 cites W2155875767 @default.
- W3204676295 cites W2166232227 @default.
- W3204676295 cites W2171181994 @default.
- W3204676295 cites W2177319998 @default.
- W3204676295 cites W2270470215 @default.
- W3204676295 cites W2296154022 @default.
- W3204676295 cites W2395784021 @default.
- W3204676295 cites W2401820359 @default.
- W3204676295 cites W2464977649 @default.
- W3204676295 cites W2500368946 @default.
- W3204676295 cites W2527824850 @default.
- W3204676295 cites W2588989789 @default.
- W3204676295 cites W2615874593 @default.
- W3204676295 cites W2736191430 @default.
- W3204676295 cites W2754051771 @default.
- W3204676295 cites W2765693785 @default.
- W3204676295 cites W2773912019 @default.
- W3204676295 cites W2795342689 @default.
- W3204676295 cites W2802039875 @default.
- W3204676295 cites W2897498060 @default.
- W3204676295 cites W2913141042 @default.
- W3204676295 cites W2947142702 @default.
- W3204676295 cites W3002332972 @default.
- W3204676295 cites W3013838736 @default.
- W3204676295 cites W3046599172 @default.
- W3204676295 cites W3110889465 @default.
- W3204676295 cites W3116345089 @default.
- W3204676295 cites W4231119217 @default.
- W3204676295 cites W4240897894 @default.
- W3204676295 cites W4254902779 @default.
- W3204676295 doi "https://doi.org/10.3390/s21196446" @default.
- W3204676295 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8512068" @default.
- W3204676295 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34640763" @default.
- W3204676295 hasPublicationYear "2021" @default.
- W3204676295 type Work @default.
- W3204676295 sameAs 3204676295 @default.
- W3204676295 citedByCount "8" @default.
- W3204676295 countsByYear W32046762952022 @default.
- W3204676295 countsByYear W32046762952023 @default.
- W3204676295 crossrefType "journal-article" @default.
- W3204676295 hasAuthorship W3204676295A5002342230 @default.
- W3204676295 hasAuthorship W3204676295A5028354888 @default.
- W3204676295 hasAuthorship W3204676295A5058927498 @default.
- W3204676295 hasAuthorship W3204676295A5069263383 @default.
- W3204676295 hasBestOaLocation W32046762951 @default.
- W3204676295 hasConcept C102519508 @default.
- W3204676295 hasConcept C106131492 @default.
- W3204676295 hasConcept C108583219 @default.
- W3204676295 hasConcept C114466953 @default.
- W3204676295 hasConcept C134306372 @default.
- W3204676295 hasConcept C142433447 @default.
- W3204676295 hasConcept C149635348 @default.
- W3204676295 hasConcept C150594956 @default.