Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204689188> ?p ?o ?g. }
- W3204689188 endingPage "24" @default.
- W3204689188 startingPage "11" @default.
- W3204689188 abstract "In this paper, we propose an artificial neural network framework that can represent the foam effects expressed in liquid simulation in detail without noise. The position and advection of foam particles are calculated using the existing screen projection method, and the noise problem that appears in this process is solved through an proposed artificial neural network. The important thing in the screen projection approach is the projection map, but noise occurs in the projection map in the process of projecting momentum into the discretized screen space, and we efficiently solve this problem by using an artificial neural network-based denoising network. When the foam generating area is selected through the projection map, 2D is inversely transformed into 3D space to generate foam particles. We solve the existing denoising network problem in which small-scaled foam particles disappear. In addition, by integrating the proposed algorithm with the screen-space projection framework, all the advantages of this approach can be accommodated. As a result, it shows through various experiments whether it is possible to stably represent not only the clean foam effects but also the foam particles lost due to the denoising process." @default.
- W3204689188 created "2021-10-11" @default.
- W3204689188 creator A5067673047 @default.
- W3204689188 date "2021-08-01" @default.
- W3204689188 modified "2023-09-25" @default.
- W3204689188 title "Refinement of Projection Map Based on Artificial Neural Networks to Represent Noise-Reduced Foam Effects" @default.
- W3204689188 cites W1885185971 @default.
- W3204689188 cites W1911053776 @default.
- W3204689188 cites W1965034778 @default.
- W3204689188 cites W1966158133 @default.
- W3204689188 cites W2003881039 @default.
- W3204689188 cites W2009742989 @default.
- W3204689188 cites W2030642278 @default.
- W3204689188 cites W2037642501 @default.
- W3204689188 cites W2052469858 @default.
- W3204689188 cites W2053956513 @default.
- W3204689188 cites W2054364255 @default.
- W3204689188 cites W2056370875 @default.
- W3204689188 cites W2061079774 @default.
- W3204689188 cites W2066508438 @default.
- W3204689188 cites W2067291656 @default.
- W3204689188 cites W2116240109 @default.
- W3204689188 cites W2126195192 @default.
- W3204689188 cites W2128943711 @default.
- W3204689188 cites W2162064851 @default.
- W3204689188 cites W2162410491 @default.
- W3204689188 cites W2164900196 @default.
- W3204689188 cites W2247094253 @default.
- W3204689188 cites W2294696552 @default.
- W3204689188 cites W2345867065 @default.
- W3204689188 cites W2508457857 @default.
- W3204689188 cites W2520574092 @default.
- W3204689188 cites W2610374906 @default.
- W3204689188 cites W2801723759 @default.
- W3204689188 cites W2884051856 @default.
- W3204689188 cites W2894820511 @default.
- W3204689188 cites W2948092416 @default.
- W3204689188 cites W2952323569 @default.
- W3204689188 cites W2963470893 @default.
- W3204689188 cites W2963686971 @default.
- W3204689188 cites W2963725279 @default.
- W3204689188 cites W2964125708 @default.
- W3204689188 cites W2964128214 @default.
- W3204689188 cites W2967452137 @default.
- W3204689188 cites W3104397553 @default.
- W3204689188 cites W3104725225 @default.
- W3204689188 cites W3113312734 @default.
- W3204689188 cites W3122204603 @default.
- W3204689188 cites W3125460488 @default.
- W3204689188 cites W3138058008 @default.
- W3204689188 cites W3138866632 @default.
- W3204689188 cites W4239511819 @default.
- W3204689188 cites W4252379131 @default.
- W3204689188 doi "https://doi.org/10.15701/kcgs.2021.27.4.11" @default.
- W3204689188 hasPublicationYear "2021" @default.
- W3204689188 type Work @default.
- W3204689188 sameAs 3204689188 @default.
- W3204689188 citedByCount "0" @default.
- W3204689188 crossrefType "journal-article" @default.
- W3204689188 hasAuthorship W3204689188A5067673047 @default.
- W3204689188 hasBestOaLocation W32046891881 @default.
- W3204689188 hasConcept C111919701 @default.
- W3204689188 hasConcept C11413529 @default.
- W3204689188 hasConcept C115961682 @default.
- W3204689188 hasConcept C127162648 @default.
- W3204689188 hasConcept C134306372 @default.
- W3204689188 hasConcept C154945302 @default.
- W3204689188 hasConcept C163294075 @default.
- W3204689188 hasConcept C202426404 @default.
- W3204689188 hasConcept C2780909371 @default.
- W3204689188 hasConcept C31258907 @default.
- W3204689188 hasConcept C33923547 @default.
- W3204689188 hasConcept C41008148 @default.
- W3204689188 hasConcept C47798520 @default.
- W3204689188 hasConcept C50644808 @default.
- W3204689188 hasConcept C57493831 @default.
- W3204689188 hasConcept C65557600 @default.
- W3204689188 hasConcept C73000952 @default.
- W3204689188 hasConcept C98045186 @default.
- W3204689188 hasConcept C99498987 @default.
- W3204689188 hasConceptScore W3204689188C111919701 @default.
- W3204689188 hasConceptScore W3204689188C11413529 @default.
- W3204689188 hasConceptScore W3204689188C115961682 @default.
- W3204689188 hasConceptScore W3204689188C127162648 @default.
- W3204689188 hasConceptScore W3204689188C134306372 @default.
- W3204689188 hasConceptScore W3204689188C154945302 @default.
- W3204689188 hasConceptScore W3204689188C163294075 @default.
- W3204689188 hasConceptScore W3204689188C202426404 @default.
- W3204689188 hasConceptScore W3204689188C2780909371 @default.
- W3204689188 hasConceptScore W3204689188C31258907 @default.
- W3204689188 hasConceptScore W3204689188C33923547 @default.
- W3204689188 hasConceptScore W3204689188C41008148 @default.
- W3204689188 hasConceptScore W3204689188C47798520 @default.
- W3204689188 hasConceptScore W3204689188C50644808 @default.
- W3204689188 hasConceptScore W3204689188C57493831 @default.
- W3204689188 hasConceptScore W3204689188C65557600 @default.
- W3204689188 hasConceptScore W3204689188C73000952 @default.
- W3204689188 hasConceptScore W3204689188C98045186 @default.