Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204693088> ?p ?o ?g. }
- W3204693088 abstract "Deep learning networks have been successfully applied to transfer functions so that the models can be adapted from the source domain to different target domains. This study uses multiple convolutional neural networks to decode the electroencephalogram (EEG) of stroke patients to design effective motor imagery (MI) brain-computer interface (BCI) system. This study has introduced 'fine-tune' to transfer model parameters and reduced training time. The performance of the proposed framework is evaluated by the abilities of the models for two-class MI recognition. The results show that the best framework is the combination of the EEGNet and 'fine-tune' transferred model. The average classification accuracy of the proposed model for 11 subjects is 66.36%, and the algorithm complexity is much lower than other models.These good performance indicate that the EEGNet model has great potential for MI stroke rehabilitation based on BCI system. It also successfully demonstrated the efficiency of transfer learning for improving the performance of EEG-based stroke rehabilitation for the BCI system." @default.
- W3204693088 created "2021-10-11" @default.
- W3204693088 creator A5004432231 @default.
- W3204693088 creator A5006089791 @default.
- W3204693088 creator A5014206846 @default.
- W3204693088 creator A5017278295 @default.
- W3204693088 creator A5022802322 @default.
- W3204693088 creator A5033327049 @default.
- W3204693088 creator A5034350675 @default.
- W3204693088 creator A5040723634 @default.
- W3204693088 creator A5070458137 @default.
- W3204693088 creator A5079311625 @default.
- W3204693088 creator A5080476738 @default.
- W3204693088 creator A5090263430 @default.
- W3204693088 date "2021-10-05" @default.
- W3204693088 modified "2023-09-23" @default.
- W3204693088 title "A transfer learning framework based on motor imagery rehabilitation for stroke" @default.
- W3204693088 cites W1963638526 @default.
- W3204693088 cites W2040775601 @default.
- W3204693088 cites W2059568092 @default.
- W3204693088 cites W2103014813 @default.
- W3204693088 cites W2115126565 @default.
- W3204693088 cites W2150825261 @default.
- W3204693088 cites W2416359067 @default.
- W3204693088 cites W2507528282 @default.
- W3204693088 cites W2531409750 @default.
- W3204693088 cites W2533800772 @default.
- W3204693088 cites W2557301950 @default.
- W3204693088 cites W2785530276 @default.
- W3204693088 cites W2792724009 @default.
- W3204693088 cites W2896811665 @default.
- W3204693088 cites W2916188667 @default.
- W3204693088 cites W2954214015 @default.
- W3204693088 cites W2963165299 @default.
- W3204693088 cites W2963460810 @default.
- W3204693088 cites W2971075653 @default.
- W3204693088 cites W2982376398 @default.
- W3204693088 cites W2990809856 @default.
- W3204693088 cites W3013595708 @default.
- W3204693088 cites W3040552008 @default.
- W3204693088 cites W3048881327 @default.
- W3204693088 cites W3083891030 @default.
- W3204693088 cites W3101022551 @default.
- W3204693088 cites W3102455230 @default.
- W3204693088 cites W772526079 @default.
- W3204693088 cites W2761949566 @default.
- W3204693088 doi "https://doi.org/10.1038/s41598-021-99114-1" @default.
- W3204693088 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8492790" @default.
- W3204693088 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34611209" @default.
- W3204693088 hasPublicationYear "2021" @default.
- W3204693088 type Work @default.
- W3204693088 sameAs 3204693088 @default.
- W3204693088 citedByCount "13" @default.
- W3204693088 countsByYear W32046930882022 @default.
- W3204693088 countsByYear W32046930882023 @default.
- W3204693088 crossrefType "journal-article" @default.
- W3204693088 hasAuthorship W3204693088A5004432231 @default.
- W3204693088 hasAuthorship W3204693088A5006089791 @default.
- W3204693088 hasAuthorship W3204693088A5014206846 @default.
- W3204693088 hasAuthorship W3204693088A5017278295 @default.
- W3204693088 hasAuthorship W3204693088A5022802322 @default.
- W3204693088 hasAuthorship W3204693088A5033327049 @default.
- W3204693088 hasAuthorship W3204693088A5034350675 @default.
- W3204693088 hasAuthorship W3204693088A5040723634 @default.
- W3204693088 hasAuthorship W3204693088A5070458137 @default.
- W3204693088 hasAuthorship W3204693088A5079311625 @default.
- W3204693088 hasAuthorship W3204693088A5080476738 @default.
- W3204693088 hasAuthorship W3204693088A5090263430 @default.
- W3204693088 hasBestOaLocation W32046930881 @default.
- W3204693088 hasConcept C108583219 @default.
- W3204693088 hasConcept C113843644 @default.
- W3204693088 hasConcept C119857082 @default.
- W3204693088 hasConcept C127413603 @default.
- W3204693088 hasConcept C129307140 @default.
- W3204693088 hasConcept C150899416 @default.
- W3204693088 hasConcept C153180895 @default.
- W3204693088 hasConcept C154945302 @default.
- W3204693088 hasConcept C15744967 @default.
- W3204693088 hasConcept C157915830 @default.
- W3204693088 hasConcept C169760540 @default.
- W3204693088 hasConcept C173201364 @default.
- W3204693088 hasConcept C173608175 @default.
- W3204693088 hasConcept C1862650 @default.
- W3204693088 hasConcept C2778818304 @default.
- W3204693088 hasConcept C2780645631 @default.
- W3204693088 hasConcept C41008148 @default.
- W3204693088 hasConcept C50644808 @default.
- W3204693088 hasConcept C522805319 @default.
- W3204693088 hasConcept C54808283 @default.
- W3204693088 hasConcept C71924100 @default.
- W3204693088 hasConcept C78519656 @default.
- W3204693088 hasConcept C81363708 @default.
- W3204693088 hasConcept C99508421 @default.
- W3204693088 hasConceptScore W3204693088C108583219 @default.
- W3204693088 hasConceptScore W3204693088C113843644 @default.
- W3204693088 hasConceptScore W3204693088C119857082 @default.
- W3204693088 hasConceptScore W3204693088C127413603 @default.
- W3204693088 hasConceptScore W3204693088C129307140 @default.
- W3204693088 hasConceptScore W3204693088C150899416 @default.
- W3204693088 hasConceptScore W3204693088C153180895 @default.