Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204694539> ?p ?o ?g. }
- W3204694539 endingPage "108042" @default.
- W3204694539 startingPage "108042" @default.
- W3204694539 abstract "Let H=−Δ+|x|2 be the Hermite operator in Rn. In this paper we study almost everywhere convergence of the Bochner-Riesz means associated with H which is defined by SRλ(H)f(x)=∑k=0∞(1−2k+nR2)+λPkf(x). Here Pkf is the k-th Hermite spectral projection operator. For 2≤p<∞, we prove thatlimR→∞SRλ(H)f=fa.e. for all f∈Lp(Rn) provided that λ>λ(p)/2 and λ(p)=max{n(1/2−1/p)−1/2,0}. Conversely, we also show the convergence generally fails if λ<λ(p)/2 in the sense that there is an f∈Lp(Rn) for 2n/(n−1)≤p such that the convergence fails. This is in surprising contrast with a.e. convergence of the classical Bochner-Riesz means for the Laplacian. For n≥2 and p≥2 our result tells that the critical summability index for a.e. convergence for SRλ(H) is as small as only the half of the critical index for a.e. convergence of the classical Bochner-Riesz means. When n=1, we show a.e. convergence holds for f∈Lp(R) with p≥2 whenever λ>0. Compared with the classical result due to Askey and Wainger who showed the optimal Lp convergence for SRλ(H) on R we only need smaller summability index for a.e. convergence." @default.
- W3204694539 created "2021-10-11" @default.
- W3204694539 creator A5002739553 @default.
- W3204694539 creator A5013652689 @default.
- W3204694539 creator A5033208781 @default.
- W3204694539 creator A5059859011 @default.
- W3204694539 creator A5063307120 @default.
- W3204694539 date "2021-12-01" @default.
- W3204694539 modified "2023-10-18" @default.
- W3204694539 title "Almost everywhere convergence of Bochner-Riesz means for the Hermite operators" @default.
- W3204694539 cites W1556076229 @default.
- W3204694539 cites W1595069505 @default.
- W3204694539 cites W1862690593 @default.
- W3204694539 cites W1988154070 @default.
- W3204694539 cites W1989653172 @default.
- W3204694539 cites W1991106941 @default.
- W3204694539 cites W1992998532 @default.
- W3204694539 cites W2000993152 @default.
- W3204694539 cites W2002189247 @default.
- W3204694539 cites W2016326733 @default.
- W3204694539 cites W2023343827 @default.
- W3204694539 cites W2023959245 @default.
- W3204694539 cites W2028777901 @default.
- W3204694539 cites W2030821603 @default.
- W3204694539 cites W2034036796 @default.
- W3204694539 cites W2047768429 @default.
- W3204694539 cites W2048466043 @default.
- W3204694539 cites W2083947946 @default.
- W3204694539 cites W2089184704 @default.
- W3204694539 cites W2093371924 @default.
- W3204694539 cites W2093720328 @default.
- W3204694539 cites W2102463446 @default.
- W3204694539 cites W2114016913 @default.
- W3204694539 cites W2123234383 @default.
- W3204694539 cites W2157615867 @default.
- W3204694539 cites W2327509254 @default.
- W3204694539 cites W2482229918 @default.
- W3204694539 cites W2515159535 @default.
- W3204694539 cites W2962964446 @default.
- W3204694539 cites W2968240293 @default.
- W3204694539 cites W2982516965 @default.
- W3204694539 cites W2995484395 @default.
- W3204694539 cites W3045385045 @default.
- W3204694539 cites W3104618294 @default.
- W3204694539 cites W3104832491 @default.
- W3204694539 cites W328800714 @default.
- W3204694539 cites W4213061483 @default.
- W3204694539 cites W4240995191 @default.
- W3204694539 cites W785180639 @default.
- W3204694539 doi "https://doi.org/10.1016/j.aim.2021.108042" @default.
- W3204694539 hasPublicationYear "2021" @default.
- W3204694539 type Work @default.
- W3204694539 sameAs 3204694539 @default.
- W3204694539 citedByCount "0" @default.
- W3204694539 crossrefType "journal-article" @default.
- W3204694539 hasAuthorship W3204694539A5002739553 @default.
- W3204694539 hasAuthorship W3204694539A5013652689 @default.
- W3204694539 hasAuthorship W3204694539A5033208781 @default.
- W3204694539 hasAuthorship W3204694539A5059859011 @default.
- W3204694539 hasAuthorship W3204694539A5063307120 @default.
- W3204694539 hasBestOaLocation W32046945392 @default.
- W3204694539 hasConcept C104317684 @default.
- W3204694539 hasConcept C114614502 @default.
- W3204694539 hasConcept C158448853 @default.
- W3204694539 hasConcept C162324750 @default.
- W3204694539 hasConcept C17020691 @default.
- W3204694539 hasConcept C185592680 @default.
- W3204694539 hasConcept C201362023 @default.
- W3204694539 hasConcept C202444582 @default.
- W3204694539 hasConcept C27142425 @default.
- W3204694539 hasConcept C2777303404 @default.
- W3204694539 hasConcept C33923547 @default.
- W3204694539 hasConcept C50522688 @default.
- W3204694539 hasConcept C55493867 @default.
- W3204694539 hasConcept C86339819 @default.
- W3204694539 hasConceptScore W3204694539C104317684 @default.
- W3204694539 hasConceptScore W3204694539C114614502 @default.
- W3204694539 hasConceptScore W3204694539C158448853 @default.
- W3204694539 hasConceptScore W3204694539C162324750 @default.
- W3204694539 hasConceptScore W3204694539C17020691 @default.
- W3204694539 hasConceptScore W3204694539C185592680 @default.
- W3204694539 hasConceptScore W3204694539C201362023 @default.
- W3204694539 hasConceptScore W3204694539C202444582 @default.
- W3204694539 hasConceptScore W3204694539C27142425 @default.
- W3204694539 hasConceptScore W3204694539C2777303404 @default.
- W3204694539 hasConceptScore W3204694539C33923547 @default.
- W3204694539 hasConceptScore W3204694539C50522688 @default.
- W3204694539 hasConceptScore W3204694539C55493867 @default.
- W3204694539 hasConceptScore W3204694539C86339819 @default.
- W3204694539 hasFunder F4320321001 @default.
- W3204694539 hasFunder F4320322120 @default.
- W3204694539 hasFunder F4320334704 @default.
- W3204694539 hasLocation W32046945391 @default.
- W3204694539 hasLocation W32046945392 @default.
- W3204694539 hasOpenAccess W3204694539 @default.
- W3204694539 hasPrimaryLocation W32046945391 @default.
- W3204694539 hasRelatedWork W1978042415 @default.
- W3204694539 hasRelatedWork W1985024418 @default.