Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204695997> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3204695997 abstract "Due to the continuous and rapid growth of social media, opinionated contents are actively created by users in different languages about various products, services, events, and political parties. The automated classification of these contents prompted the need for multilingual sentiment analysis researches. However, the majority of research efforts are devoted to English and Arabic, English and German, English and French languages, while a great share of information is available in other languages such as Hausa. This paper proposes multilingual sentiment analysis of English and Hausa tweets using an Enhanced Feature Acquisition Method (EFAM). The method uses machine learning approach to integrate two newly defined Hausa features (Hausa Lexical Feature and Hausa Sentiment Intensifiers) and English feature to measure classification performance and to synthesize a more accurate sentiment classification procedure. The approach has been evaluated using several experiments with different classifiers in both monolingual and multilingual datasets. The experimental results reveal the effectiveness of the approach in enhancing feature integration for multilingual sentiment analysis. Similarly, by using features drawn from multiple languages, we can construct machine learning classifiers with an average precision of over 65%." @default.
- W3204695997 created "2021-10-11" @default.
- W3204695997 creator A5009579664 @default.
- W3204695997 creator A5026289402 @default.
- W3204695997 creator A5050152735 @default.
- W3204695997 creator A5051411649 @default.
- W3204695997 date "2021-01-01" @default.
- W3204695997 modified "2023-10-16" @default.
- W3204695997 title "An Enhanced Feature Acquisition for Sentiment Analysis of English and Hausa Tweets" @default.
- W3204695997 cites W1541259215 @default.
- W3204695997 cites W193524605 @default.
- W3204695997 cites W2084046180 @default.
- W3204695997 cites W2101234009 @default.
- W3204695997 cites W2141266715 @default.
- W3204695997 cites W2278629362 @default.
- W3204695997 cites W2460474657 @default.
- W3204695997 cites W2510916058 @default.
- W3204695997 cites W2610506843 @default.
- W3204695997 cites W2901469510 @default.
- W3204695997 cites W2921300811 @default.
- W3204695997 cites W2982216702 @default.
- W3204695997 cites W3034620805 @default.
- W3204695997 cites W40549020 @default.
- W3204695997 doi "https://doi.org/10.14569/ijacsa.2021.0120913" @default.
- W3204695997 hasPublicationYear "2021" @default.
- W3204695997 type Work @default.
- W3204695997 sameAs 3204695997 @default.
- W3204695997 citedByCount "0" @default.
- W3204695997 crossrefType "journal-article" @default.
- W3204695997 hasAuthorship W3204695997A5009579664 @default.
- W3204695997 hasAuthorship W3204695997A5026289402 @default.
- W3204695997 hasAuthorship W3204695997A5050152735 @default.
- W3204695997 hasAuthorship W3204695997A5051411649 @default.
- W3204695997 hasBestOaLocation W32046959971 @default.
- W3204695997 hasConcept C138885662 @default.
- W3204695997 hasConcept C153924320 @default.
- W3204695997 hasConcept C154945302 @default.
- W3204695997 hasConcept C199360897 @default.
- W3204695997 hasConcept C204321447 @default.
- W3204695997 hasConcept C2776401178 @default.
- W3204695997 hasConcept C2780801425 @default.
- W3204695997 hasConcept C41008148 @default.
- W3204695997 hasConcept C41895202 @default.
- W3204695997 hasConcept C66402592 @default.
- W3204695997 hasConcept C96455323 @default.
- W3204695997 hasConceptScore W3204695997C138885662 @default.
- W3204695997 hasConceptScore W3204695997C153924320 @default.
- W3204695997 hasConceptScore W3204695997C154945302 @default.
- W3204695997 hasConceptScore W3204695997C199360897 @default.
- W3204695997 hasConceptScore W3204695997C204321447 @default.
- W3204695997 hasConceptScore W3204695997C2776401178 @default.
- W3204695997 hasConceptScore W3204695997C2780801425 @default.
- W3204695997 hasConceptScore W3204695997C41008148 @default.
- W3204695997 hasConceptScore W3204695997C41895202 @default.
- W3204695997 hasConceptScore W3204695997C66402592 @default.
- W3204695997 hasConceptScore W3204695997C96455323 @default.
- W3204695997 hasIssue "9" @default.
- W3204695997 hasLocation W32046959971 @default.
- W3204695997 hasOpenAccess W3204695997 @default.
- W3204695997 hasPrimaryLocation W32046959971 @default.
- W3204695997 hasRelatedWork W2288974521 @default.
- W3204695997 hasRelatedWork W2771841020 @default.
- W3204695997 hasRelatedWork W2923978210 @default.
- W3204695997 hasRelatedWork W3081766916 @default.
- W3204695997 hasRelatedWork W3107474891 @default.
- W3204695997 hasRelatedWork W3161447971 @default.
- W3204695997 hasRelatedWork W4281904752 @default.
- W3204695997 hasRelatedWork W4293071540 @default.
- W3204695997 hasRelatedWork W4301311969 @default.
- W3204695997 hasRelatedWork W4361018082 @default.
- W3204695997 hasVolume "12" @default.
- W3204695997 isParatext "false" @default.
- W3204695997 isRetracted "false" @default.
- W3204695997 magId "3204695997" @default.
- W3204695997 workType "article" @default.