Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204696090> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3204696090 abstract "In order to explain people's health habits, Health Behaviour Theories have been used to analyze posts on social media during previous incidents. Regarding the COVID-19 pandemic, social media data can expose public attitudes and experiences, as well as reveal elements that impede or encourage attempts to reduce the spread of the disease. This paper aims to use Health Behaviour Theories (Health Belief Model, Social Norm, and Trust) and Machine Learning to investigate or examine people's behaviours and reactions toward COVID-19. First, we extract COVID-19 comments on Twitter and use candidate keyphrases representing each health behaviour construct to label the comments. Next, we develop three machine learning models/classifiers - Support Vector Machine (SVM), Decision Tree (DT) and Logistic Regression (LR) - to automatically classify comments into appropriate constructs. We train and evaluate the models using 10-fold cross-validation and compare their performance based on precision, recall, and Fl-score metrics. Our results show that DT and SVM perform best with an overall Fl-score of up to 98% for multiclass (single label) classification, while DT outperform other classifiers with an overall Fl-score of up to 100% for multiclass-multilabel classification. Finally, we conduct thematic analysis of the comments in each construct to identify meaningful themes that represent key issues related to the COVID-19 pandemic. Our findings reveal 31 themes across all constructs." @default.
- W3204696090 created "2021-10-11" @default.
- W3204696090 creator A5008462534 @default.
- W3204696090 creator A5034768623 @default.
- W3204696090 creator A5074993442 @default.
- W3204696090 creator A5085487925 @default.
- W3204696090 date "2021-08-04" @default.
- W3204696090 modified "2023-10-17" @default.
- W3204696090 title "Analyzing COVID-19 Tweets using Health Behaviour Theories and Machine Learning" @default.
- W3204696090 cites W1594666868 @default.
- W3204696090 cites W1684832230 @default.
- W3204696090 cites W1973130673 @default.
- W3204696090 cites W1996477081 @default.
- W3204696090 cites W2096563449 @default.
- W3204696090 cites W2132470305 @default.
- W3204696090 cites W2150976333 @default.
- W3204696090 cites W2626965956 @default.
- W3204696090 cites W2760942297 @default.
- W3204696090 cites W2766096670 @default.
- W3204696090 cites W2779276544 @default.
- W3204696090 cites W2887039808 @default.
- W3204696090 cites W2902308602 @default.
- W3204696090 cites W2963565281 @default.
- W3204696090 cites W3020481122 @default.
- W3204696090 cites W3034707512 @default.
- W3204696090 cites W3035127876 @default.
- W3204696090 cites W3047047760 @default.
- W3204696090 cites W3048675231 @default.
- W3204696090 cites W3091620537 @default.
- W3204696090 cites W3103184668 @default.
- W3204696090 cites W3122020779 @default.
- W3204696090 cites W3155652949 @default.
- W3204696090 cites W608314793 @default.
- W3204696090 doi "https://doi.org/10.1109/segah52098.2021.9551908" @default.
- W3204696090 hasPublicationYear "2021" @default.
- W3204696090 type Work @default.
- W3204696090 sameAs 3204696090 @default.
- W3204696090 citedByCount "1" @default.
- W3204696090 countsByYear W32046960902021 @default.
- W3204696090 crossrefType "proceedings-article" @default.
- W3204696090 hasAuthorship W3204696090A5008462534 @default.
- W3204696090 hasAuthorship W3204696090A5034768623 @default.
- W3204696090 hasAuthorship W3204696090A5074993442 @default.
- W3204696090 hasAuthorship W3204696090A5085487925 @default.
- W3204696090 hasConcept C100660578 @default.
- W3204696090 hasConcept C119857082 @default.
- W3204696090 hasConcept C12267149 @default.
- W3204696090 hasConcept C136764020 @default.
- W3204696090 hasConcept C144024400 @default.
- W3204696090 hasConcept C151956035 @default.
- W3204696090 hasConcept C154945302 @default.
- W3204696090 hasConcept C15744967 @default.
- W3204696090 hasConcept C180747234 @default.
- W3204696090 hasConcept C190248442 @default.
- W3204696090 hasConcept C199360897 @default.
- W3204696090 hasConcept C2780801425 @default.
- W3204696090 hasConcept C36289849 @default.
- W3204696090 hasConcept C41008148 @default.
- W3204696090 hasConcept C518677369 @default.
- W3204696090 hasConcept C74196892 @default.
- W3204696090 hasConcept C84525736 @default.
- W3204696090 hasConceptScore W3204696090C100660578 @default.
- W3204696090 hasConceptScore W3204696090C119857082 @default.
- W3204696090 hasConceptScore W3204696090C12267149 @default.
- W3204696090 hasConceptScore W3204696090C136764020 @default.
- W3204696090 hasConceptScore W3204696090C144024400 @default.
- W3204696090 hasConceptScore W3204696090C151956035 @default.
- W3204696090 hasConceptScore W3204696090C154945302 @default.
- W3204696090 hasConceptScore W3204696090C15744967 @default.
- W3204696090 hasConceptScore W3204696090C180747234 @default.
- W3204696090 hasConceptScore W3204696090C190248442 @default.
- W3204696090 hasConceptScore W3204696090C199360897 @default.
- W3204696090 hasConceptScore W3204696090C2780801425 @default.
- W3204696090 hasConceptScore W3204696090C36289849 @default.
- W3204696090 hasConceptScore W3204696090C41008148 @default.
- W3204696090 hasConceptScore W3204696090C518677369 @default.
- W3204696090 hasConceptScore W3204696090C74196892 @default.
- W3204696090 hasConceptScore W3204696090C84525736 @default.
- W3204696090 hasLocation W32046960901 @default.
- W3204696090 hasOpenAccess W3204696090 @default.
- W3204696090 hasPrimaryLocation W32046960901 @default.
- W3204696090 hasRelatedWork W1996541855 @default.
- W3204696090 hasRelatedWork W3186233728 @default.
- W3204696090 hasRelatedWork W3195168932 @default.
- W3204696090 hasRelatedWork W3210918776 @default.
- W3204696090 hasRelatedWork W4224946860 @default.
- W3204696090 hasRelatedWork W4239706975 @default.
- W3204696090 hasRelatedWork W4321636153 @default.
- W3204696090 hasRelatedWork W4383535405 @default.
- W3204696090 hasRelatedWork W4384520063 @default.
- W3204696090 hasRelatedWork W4384828018 @default.
- W3204696090 isParatext "false" @default.
- W3204696090 isRetracted "false" @default.
- W3204696090 magId "3204696090" @default.
- W3204696090 workType "article" @default.