Matches in SemOpenAlex for { <https://semopenalex.org/work/W3204697718> ?p ?o ?g. }
- W3204697718 endingPage "2111" @default.
- W3204697718 startingPage "2097" @default.
- W3204697718 abstract "In recent times, Internet of Things (IoT) and Cloud Computing (CC) paradigms are commonly employed in different healthcare applications. IoT gadgets generate huge volumes of patient data in healthcare domain, which can be examined on cloud over the available storage and computation resources in mobile gadgets. Chronic Kidney Disease (CKD) is one of the deadliest diseases that has high mortality rate across the globe. The current research work presents a novel IoT and cloud-based CKD diagnosis model called Flower Pollination Algorithm (FPA)-based Deep Neural Network (DNN) model abbreviated as FPA-DNN. The steps involved in the presented FPA-DNN model are data collection, preprocessing, Feature Selection (FS), and classification. Primarily, the IoT gadgets are utilized in the collection of a patient’s health information. The proposed FPA-DNN model deploys Oppositional Crow Search (OCS) algorithm for FS, which selects the optimal subset of features from the preprocessed data. The application of FPA helps in tuning the DNN parameters for better classification performance. The simulation analysis of the proposed FPA-DNN model was performed against the benchmark CKD dataset. The results were examined under different aspects. The simulation outcomes established the superior performance of FPA-DNN technique by achieving the highest sensitivity of 98.80%, specificity of 98.66%, accuracy of 98.75%, F-score of 99%, and kappa of 97.33%." @default.
- W3204697718 created "2021-10-11" @default.
- W3204697718 creator A5021407862 @default.
- W3204697718 creator A5026203996 @default.
- W3204697718 creator A5028012999 @default.
- W3204697718 creator A5039237767 @default.
- W3204697718 creator A5050574184 @default.
- W3204697718 creator A5063103313 @default.
- W3204697718 creator A5075183774 @default.
- W3204697718 date "2022-01-01" @default.
- W3204697718 modified "2023-10-14" @default.
- W3204697718 title "Optimized Tuned Deep Learning Model for Chronic Kidney Disease Classification" @default.
- W3204697718 cites W2105103777 @default.
- W3204697718 cites W2258475915 @default.
- W3204697718 cites W2306447822 @default.
- W3204697718 cites W2471377928 @default.
- W3204697718 cites W2556560382 @default.
- W3204697718 cites W2559094099 @default.
- W3204697718 cites W2578907517 @default.
- W3204697718 cites W2592420394 @default.
- W3204697718 cites W2752051970 @default.
- W3204697718 cites W2767976193 @default.
- W3204697718 cites W2774270830 @default.
- W3204697718 cites W2775965637 @default.
- W3204697718 cites W2955086442 @default.
- W3204697718 cites W3010770988 @default.
- W3204697718 cites W3010866589 @default.
- W3204697718 cites W3033176519 @default.
- W3204697718 cites W3033417100 @default.
- W3204697718 cites W3110972490 @default.
- W3204697718 doi "https://doi.org/10.32604/cmc.2022.019790" @default.
- W3204697718 hasPublicationYear "2022" @default.
- W3204697718 type Work @default.
- W3204697718 sameAs 3204697718 @default.
- W3204697718 citedByCount "7" @default.
- W3204697718 countsByYear W32046977182021 @default.
- W3204697718 countsByYear W32046977182022 @default.
- W3204697718 countsByYear W32046977182023 @default.
- W3204697718 crossrefType "journal-article" @default.
- W3204697718 hasAuthorship W3204697718A5021407862 @default.
- W3204697718 hasAuthorship W3204697718A5026203996 @default.
- W3204697718 hasAuthorship W3204697718A5028012999 @default.
- W3204697718 hasAuthorship W3204697718A5039237767 @default.
- W3204697718 hasAuthorship W3204697718A5050574184 @default.
- W3204697718 hasAuthorship W3204697718A5063103313 @default.
- W3204697718 hasAuthorship W3204697718A5075183774 @default.
- W3204697718 hasBestOaLocation W32046977181 @default.
- W3204697718 hasConcept C10551718 @default.
- W3204697718 hasConcept C111919701 @default.
- W3204697718 hasConcept C119857082 @default.
- W3204697718 hasConcept C124101348 @default.
- W3204697718 hasConcept C13280743 @default.
- W3204697718 hasConcept C134306372 @default.
- W3204697718 hasConcept C148483581 @default.
- W3204697718 hasConcept C154945302 @default.
- W3204697718 hasConcept C185798385 @default.
- W3204697718 hasConcept C205649164 @default.
- W3204697718 hasConcept C33923547 @default.
- W3204697718 hasConcept C34736171 @default.
- W3204697718 hasConcept C36503486 @default.
- W3204697718 hasConcept C40969351 @default.
- W3204697718 hasConcept C41008148 @default.
- W3204697718 hasConcept C50644808 @default.
- W3204697718 hasConcept C75684735 @default.
- W3204697718 hasConcept C79974875 @default.
- W3204697718 hasConceptScore W3204697718C10551718 @default.
- W3204697718 hasConceptScore W3204697718C111919701 @default.
- W3204697718 hasConceptScore W3204697718C119857082 @default.
- W3204697718 hasConceptScore W3204697718C124101348 @default.
- W3204697718 hasConceptScore W3204697718C13280743 @default.
- W3204697718 hasConceptScore W3204697718C134306372 @default.
- W3204697718 hasConceptScore W3204697718C148483581 @default.
- W3204697718 hasConceptScore W3204697718C154945302 @default.
- W3204697718 hasConceptScore W3204697718C185798385 @default.
- W3204697718 hasConceptScore W3204697718C205649164 @default.
- W3204697718 hasConceptScore W3204697718C33923547 @default.
- W3204697718 hasConceptScore W3204697718C34736171 @default.
- W3204697718 hasConceptScore W3204697718C36503486 @default.
- W3204697718 hasConceptScore W3204697718C40969351 @default.
- W3204697718 hasConceptScore W3204697718C41008148 @default.
- W3204697718 hasConceptScore W3204697718C50644808 @default.
- W3204697718 hasConceptScore W3204697718C75684735 @default.
- W3204697718 hasConceptScore W3204697718C79974875 @default.
- W3204697718 hasIssue "2" @default.
- W3204697718 hasLocation W32046977181 @default.
- W3204697718 hasOpenAccess W3204697718 @default.
- W3204697718 hasPrimaryLocation W32046977181 @default.
- W3204697718 hasRelatedWork W2296226123 @default.
- W3204697718 hasRelatedWork W2887039406 @default.
- W3204697718 hasRelatedWork W2897056153 @default.
- W3204697718 hasRelatedWork W2933578484 @default.
- W3204697718 hasRelatedWork W2952736244 @default.
- W3204697718 hasRelatedWork W3010890513 @default.
- W3204697718 hasRelatedWork W3092506759 @default.
- W3204697718 hasRelatedWork W3195278891 @default.
- W3204697718 hasRelatedWork W4248881655 @default.
- W3204697718 hasRelatedWork W4289389449 @default.
- W3204697718 hasVolume "70" @default.